擬ベクトル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/01 09:24 UTC 版)
|
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2016年8月)
|
擬ベクトル(ぎベクトル、英: pseudo vector)は座標の反転に対し符号が変わらない(向きが反転する)ベクトル。
擬ベクトルのことを軸性ベクトル(英: axial vector)とも呼ぶ。反対に座標を反転して符号が反転する(向きが変わらない)ベクトルを極性ベクトル(英: polar vector)と呼ぶ。
主な性質
- 軸性ベクトル同士、極性ベクトル同士の外積は軸性ベクトルになる。
- 軸性ベクトルと極性ベクトルの外積は極性ベクトルになる。
- 軸性ベクトルとスカラー、極性ベクトルと擬スカラーのスカラー積は軸性ベクトルになる。
- 極性ベクトルとスカラー、軸性ベクトルと擬スカラーのスカラー積は極性ベクトルになる。
物理量の例
- 軸性ベクトル
- 3次元空間において、軸まわりの回転を表す物理量である。これは、一般的なn次元空間での軸まわりの回転が、2階反対称テンソルで記述できることに起因している。
- n=3次元の場合、2階反対称テンソルはちょうど3つの独立成分を持ち、下式の様にレヴィ=チビタテンソル等を用いて、あたかもベクトルであるかの様に記述することができるためである。
- 擬ベクトルのページへのリンク