Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
Require Import ZArith.
From mathcomp Require Import ssreflect ssrnat seq.
(* Simple Calculator *)
Module Simple.
Inductive expr : Set :=
| Cst of Z
| Var of nat
| Add of expr & expr
| Min of expr
| Mul of expr & expr.
Fixpoint eval (env : list Z) (e : expr) : Z :=
match e with
| Cst x => x
| Var n => nth 0 env n
| Add e1 e2 => eval env e1 + eval env e2
| Min e1 => 0-eval env e1
| Mul e1 e2 => eval env e1 * eval env e2
end%Z.
Inductive code : Set :=
| Cimm of Z
| Cget of nat
| Cadd
| Cmin
| Cmul.
Fixpoint eval_code (stack : list Z) (l : list code) :=
match l with
| nil => stack
| c :: l' =>
let stack' :=
match c, stack with
| Cimm x, _ => x :: stack
| Cget n, _ => nth 0 stack n :: stack
| Cadd, x :: y :: st => x+y :: st
| Cmin, x :: st => 0-x :: st
| Cmul, x :: y :: st => x*y :: st
| _, _ => nil
end%Z
in eval_code stack' l'
end.
Fixpoint compile d (e : expr) : list code :=
match e with
| Cst x => [:: Cimm x]
| Var n => [:: Cget (d+n)]
| Add e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cadd]
| Min e1 => compile d e1 ++ [:: Cmin]
| Mul e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cmul]
end.
Lemma eval_code_cat stack l1 l2 :
eval_code stack (l1 ++ l2) = eval_code (eval_code stack l1) l2.
Proof. by elim: l1 stack => //=. Qed.
Theorem compile_correct e d stack :
eval_code stack (compile d e) = eval (drop d stack) e :: stack.
Proof.
elim: e d stack => //= [n|e1 IHe1 e2 IHe2|e IHe|e1 IHe1 e2 IHe2] d stack.
by rewrite nth_drop.
by rewrite eval_code_cat IHe2 eval_code_cat IHe1.
by rewrite eval_code_cat IHe.
by rewrite eval_code_cat IHe2 eval_code_cat IHe1.
Qed.
End Simple.
(* Iterating calculator *)
Module Iterator.
Inductive expr : Set :=
| Cst of Z
| Var of nat
| Add of expr & expr
| Min of expr
| Mul of expr & expr.
Fixpoint eval (env : list Z) (e : expr) : Z :=
match e with
| Cst x => x
| Var n => nth 0 env n
| Add e1 e2 => eval env e1 + eval env e2
| Min e1 => 0-eval env e1
| Mul e1 e2 => eval env e1 * eval env e2
end%Z.
Inductive cmd : Set :=
| Assign of nat & expr (* env[n] に結果を入れる *)
| Seq of cmd & cmd (* 順番に実行 *)
| Repeat of expr & cmd. (* n 回繰り返す *)
Fixpoint repeat_n {A : Type} (n : nat) (f : A -> A) (x : A) :=
if n is S n' then repeat_n n' f (f x) else x.
Fixpoint eval_cmd (env : list Z) (c : cmd) : list Z :=
match c with
| Assign n e => set_nth 0%Z env n (eval env e)
| Seq c1 c2 => eval_cmd (eval_cmd env c1) c2
| Repeat e c =>
if eval env e is Zpos n
then repeat_n (Pos.to_nat n) (fun e => eval_cmd e c) env
else env
end.
Inductive code : Set :=
| Cimm of Z
| Cget of nat
| Cadd
| Cmin
| Cmul
| Cset of nat
| Crep
| Cnext.
Definition next_skip c n :=
match c with
| Crep => S n
| Cnext => n - 1
| _ => n
end.
Fixpoint eval_code (skip : nat) (stack : list Z) (l : list code) :=
match l with
| nil => stack
| c :: l' =>
if skip is S _ then eval_code (next_skip c skip) stack l' else
if c is Cnext then stack else
let stack' :=
match c, stack with
| Cimm x, _ => x :: stack
| Cget n, _ => nth 0 stack n :: stack
| Cadd, x :: y :: st => x+y :: st
| Cmin, x :: st => 0-x :: st
| Cmul, x :: y :: st => x*y :: st
| Cset n, x :: st => set_nth 0%Z st n x
| Crep, Zpos n :: st =>
repeat_n (Pos.to_nat n) (fun st => eval_code 0 st l') st
| Crep, _ :: st => st
| _, _ => nil
end%Z
in
eval_code (next_skip c skip) stack' l'
end.
Fixpoint compile d (e : expr) : list code :=
match e with
| Cst x => [:: Cimm x]
| Var n => [:: Cget (d+n)]
| Add e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cadd]
| Min e1 => compile d e1 ++ [:: Cmin]
| Mul e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cmul]
end.
Fixpoint compile_cmd (c : cmd) : list code :=
match c with
| Assign n e => compile 0 e ++ [:: Cset n]
| Seq c1 c2 => compile_cmd c1 ++ compile_cmd c2
| Repeat e c => compile 0 e ++ [:: Crep] ++ compile_cmd c ++ [:: Cnext]
end.
Definition neutral c :=
match c with Cnext | Crep => false | _ => true end.
Inductive balanced : list code -> Prop :=
| Bneutral : forall c, neutral c = true -> balanced [:: c]
| Bcat : forall l1 l2, balanced l1 -> balanced l2 -> balanced (l1 ++ l2)
| Brep : forall l, balanced l -> balanced (Crep :: l ++ [:: Cnext]).
Lemma repeat_n_eq {A:Type} n f1 f2 (st : A) :
(forall st, f1 st = f2 st) -> repeat_n n f1 st = repeat_n n f2 st.
Proof.
elim: n st => //= n IHn st Heq.
by rewrite Heq IHn.
Qed.
Lemma eval_code_cat k stack (l1 l2 : seq code) :
balanced l1 ->
eval_code k stack (l1 ++ l2) =
eval_code k (eval_code k stack l1) l2.
Proof.
move=> Hbal.
elim: {l1} Hbal k stack l2.
by destruct c, k.
move=> l1 l2 Hbal1 IHl1 Hbal2 IHl2 k st l'.
by rewrite -catA !IHl1 IHl2.
move=> l1 Hbal IHl1 k st l'.
destruct k, st => /=; rewrite -catA !IHl1 //.
destruct z => //=.
rewrite subnn.
do 2 f_equal.
apply repeat_n_eq => st'.
by rewrite !IHl1.
Qed.
Hint Constructors balanced.
Lemma compile_balanced n e : balanced (compile n e).
Proof. by elim: e n => /=; auto. Qed.
Theorem compile_correct e d stack :
eval_code 0 stack (compile d e) = eval (drop d stack) e :: stack.
Proof.
move: d stack.
induction e; simpl; intros; auto.
by rewrite nth_drop.
by rewrite eval_code_cat ?IHe2 ?eval_code_cat ?IHe1 //;
apply compile_balanced.
by rewrite eval_code_cat ?IHe //; apply compile_balanced.
by rewrite eval_code_cat ?IHe2 ?eval_code_cat ?IHe1 //;
apply compile_balanced.
Qed.
Lemma compile_cmd_balanced c : balanced (compile_cmd c).
Proof. by elim: c => /=; auto using compile_balanced. Qed.
Lemma compile_cmd_S n c stack :
balanced c -> eval_code (S n) stack c = stack.
Proof.
move=> Hbal.
move: n; induction Hbal => //= n.
by rewrite eval_code_cat ?IHHbal1.
by rewrite eval_code_cat //=.
Qed.
Hint Resolve compile_balanced compile_cmd_balanced.
Theorem compile_cmd_correct c stack :
eval_code 0 stack (compile_cmd c) = eval_cmd stack c.
Proof.
move: stack.
induction c => stack /=.
by rewrite eval_code_cat ?compile_correct ?drop0.
by rewrite eval_code_cat ?compile_correct ?drop0 // IHc1 IHc2.
rewrite eval_code_cat ?compile_correct ?drop0 //.
rewrite /= eval_code_cat //=.
case: (eval stack e) => //.
by apply compile_cmd_S.
move=> p.
rewrite compile_cmd_S //.
apply repeat_n_eq=> st.
by rewrite eval_code_cat //=.
by move => _; apply compile_cmd_S.
Qed.
End Iterator.
(* Iterating calculator: ループの長さを明示した場合 *)
Module Iterator2.
Inductive expr : Set :=
| Cst of Z
| Var of nat
| Add of expr & expr
| Min of expr
| Mul of expr & expr.
Fixpoint eval (env : list Z) (e : expr) : Z :=
match e with
| Cst x => x
| Var n => nth 0 env n
| Add e1 e2 => eval env e1 + eval env e2
| Min e1 => 0-eval env e1
| Mul e1 e2 => eval env e1 * eval env e2
end%Z.
Inductive cmd : Set :=
| Assign of nat & expr (* env[n] に結果を入れる *)
| Seq of cmd & cmd (* 順番に実行 *)
| Repeat of expr & cmd. (* n 回繰り返す *)
Fixpoint eval_cmd (env : list Z) (c : cmd) : list Z :=
match c with
| Assign n e => set_nth 0%Z env n (eval env e)
| Seq c1 c2 => eval_cmd (eval_cmd env c1) c2
| Repeat e c =>
if eval env e is Zpos n
then iter (Pos.to_nat n) (fun e => eval_cmd e c) env
else env
end.
Inductive code : Set :=
| Cimm of Z
| Cget of nat
| Cadd
| Cmin
| Cmul
| Cset of nat
| Crep of nat (* ループの長さ(Cnextまでの命令数) *)
| Cnext.
Fixpoint eval_code (stack : list Z) (l : list code) :=
match l with
| nil => stack
| c :: l' =>
let stack' :=
match c, stack with
| Cimm x, _ => x :: stack
| Cget n, _ => nth 0 stack n :: stack
| Cadd, x :: y :: st => x+y :: st
| Cmin, x :: st => 0-x :: st
| Cmul, x :: y :: st => x*y :: st
| Cset n, x :: st => set_nth 0%Z st n x
| Crep _, Zpos n :: st => (* seq の iter を使う *)
iter (Pos.to_nat n) (fun st => eval_code st l') st
| Crep _, _ :: st => st
| Cnext, _ => stack
| _, _ => nil
end%Z
in
match c with
| Crep n => eval_drop n stack' l'
| Cnext => stack'
| _ => eval_code stack' l'
end
end
with eval_drop n st (l : list code) := (* 相互再帰 *)
match l, n with
| _ :: l', 0 => eval_code st l'
| _ :: l', S n' => eval_drop n' st l'
| [::], _ => st
end.
Fixpoint compile d (e : expr) : list code :=
match e with
| Cst x => [:: Cimm x]
| Var n => [:: Cget (d+n)]
| Add e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cadd]
| Min e1 => compile d e1 ++ [:: Cmin]
| Mul e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cmul]
end.
Fixpoint compile_cmd (c : cmd) : list code :=
match c with
| Assign n e => compile 0 e ++ [:: Cset n]
| Seq c1 c2 => compile_cmd c1 ++ compile_cmd c2
| Repeat e c =>
let l := compile_cmd c in
compile 0 e ++ [:: Crep (length l)] ++ l ++ [:: Cnext]
end.
Definition neutral c :=
match c with Cnext | Crep _ => false | _ => true end.
Inductive balanced : list code -> Prop :=
| Bneutral : forall c, neutral c = true -> balanced [:: c]
| Bcat : forall l1 l2, balanced l1 -> balanced l2 -> balanced (l1 ++ l2)
| Brep : forall l, balanced l ->
balanced (Crep (length l) :: l ++ [:: Cnext]).
Lemma eval_drop_cat st l1 l2 :
eval_drop (length l1) st (l1 ++ Cnext :: l2) = eval_code st l2.
Proof. by induction l1. Qed.
Lemma eval_code_cat stack (l1 l2 : seq code) :
balanced l1 ->
eval_code stack (l1 ++ l2) =
eval_code (eval_code stack l1) l2.
Proof.
move=> Hbal.
elim: {l1} Hbal stack l2.
by destruct c.
move=> l1 l2 Hbal1 IHl1 Hbal2 IHl2 st l'.
by rewrite -catA !IHl1 IHl2.
move=> l1 Hbal IHl1 st l'.
destruct st => /=. by rewrite -catA /= !eval_drop_cat.
destruct z => //=; rewrite -catA /= !eval_drop_cat //=.
f_equal.
apply eq_iter => st'.
by rewrite !IHl1.
Qed.
Hint Constructors balanced.
Lemma compile_balanced n e : balanced (compile n e).
Proof. by elim: e n => /=; auto. Qed.
Theorem compile_correct e d stack :
eval_code stack (compile d e) = eval (drop d stack) e :: stack.
Proof.
move: d stack.
induction e; simpl; intros; auto.
by rewrite nth_drop.
by rewrite eval_code_cat ?IHe2 ?eval_code_cat ?IHe1 //;
apply compile_balanced.
by rewrite eval_code_cat ?IHe //; apply compile_balanced.
by rewrite eval_code_cat ?IHe2 ?eval_code_cat ?IHe1 //;
apply compile_balanced.
Qed.
Lemma compile_cmd_balanced c : balanced (compile_cmd c).
Proof. by elim: c => /=; auto using compile_balanced. Qed.
Hint Resolve compile_balanced compile_cmd_balanced.
Theorem compile_cmd_correct c stack :
eval_code stack (compile_cmd c) = eval_cmd stack c.
Proof.
move: stack.
induction c => stack /=.
by rewrite eval_code_cat ?compile_correct ?drop0.
by rewrite eval_code_cat ?compile_correct ?drop0 // IHc1 IHc2.
rewrite eval_code_cat ?compile_correct ?drop0 //.
rewrite /= eval_drop_cat //=.
case: (eval stack e) => //.
move=> p.
apply eq_iter => st.
by rewrite eval_code_cat //=.
Qed.
End Iterator2.