Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
Require Import ZArith Extraction. From mathcomp Require Import all_ssreflect. (* Simple Calculator *) Module Simple. Inductive expr : Set := | Cst of Z | Var of nat | Add of expr & expr | Min of expr | Mul of expr & expr. Print expr. Extraction expr. Fixpoint eval (env : list Z) (e : expr) : Z := match e with | Cst x => x | Var n => nth 0 env n | Add e1 e2 => eval env e1 + eval env e2 | Min e1 => 0-eval env e1 | Mul e1 e2 => eval env e1 * eval env e2 end%Z. (* (x+3)*4 for x=2 *) Eval compute in eval [:: 2%Z] (Mul (Add (Var 0) (Cst 3)) (Cst 4)). Inductive code : Set := | Cimm of Z (* immediate *) | Cget of nat (* スタックのん番目の値を上にコピーする *) | Cadd (* 上の二つを足して、代わりに結果を置く *) | Cmin | Cmul. Fixpoint eval_code (stack : list Z) (l : list code) := match l with | nil => stack | c :: l' => let stack' := match c, stack with | Cimm x, _ => x :: stack | Cget n, _ => nth 0 stack n :: stack | Cadd, x :: y :: st => x+y :: st | Cmin, x :: st => 0-x :: st | Cmul, x :: y :: st => x*y :: st | _, _ => nil end%Z in eval_code stack' l' end. Eval compute in eval_code [:: 2%Z] [:: Cget 0; Cimm 3; Cadd; Cimm 4; Cmul]. Fixpoint compile d (e : expr) : list code := match e with | Cst x => [:: Cimm x] | Var n => [:: Cget (d+n)] (* スタックに積んだものの下に見に行く *) | Add e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cadd] | Min e1 => compile d e1 ++ [:: Cmin] | Mul e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cmul] end. Eval compute in compile 0 (Mul (Add (Var 0) (Cst 3)) (Cst 4)). Eval compute in eval_code [:: 2%Z] (compile 0 (Mul (Add (Var 0) (Cst 3)) (Cst 4))). Lemma eval_code_cat stack l1 l2 : eval_code stack (l1 ++ l2) = eval_code (eval_code stack l1) l2. Proof. by elim: l1 stack => //=. Qed. (* drop n s == s minus its first n items ([::] if size s <= n) *) Theorem compile_correct e d stack : eval_code stack (compile d e) = eval (drop d stack) e :: stack. Proof. elim: e d stack => //= [n|e1 IHe1 e2 IHe2|e IHe|e1 IHe1 e2 IHe2] d stack. - by rewrite nth_drop. - by rewrite eval_code_cat IHe2 eval_code_cat IHe1. Admitted. End Simple. (* Iterating calculator *) Module Iterator. Inductive expr : Set := | Cst of Z | Var of nat | Add of expr & expr | Min of expr | Mul of expr & expr. Fixpoint eval (env : list Z) (e : expr) : Z := match e with | Cst x => x | Var n => nth 0 env n | Add e1 e2 => eval env e1 + eval env e2 | Min e1 => 0-eval env e1 | Mul e1 e2 => eval env e1 * eval env e2 end%Z. Inductive cmd : Set := | Assign of nat & expr (* env[n] に結果を入れる *) | Seq of cmd & cmd (* 順番に実行 *) | Repeat of expr & cmd. (* n 回繰り返す *) (* r <- 1; repeat (i-1) {r <- i * r; i <- i-1} *) Definition fact := Seq (Assign 1 (Cst 1)) (Repeat (Add (Var 0) (Cst (-1))) (Seq (Assign 1 (Mul (Var 0) (Var 1))) (Assign 0 (Add (Var 0) (Cst (-1)))))). Print Z. Print positive. Print iter. Fixpoint eval_cmd (env : list Z) (c : cmd) : list Z := match c with | Assign n e => set_nth 0%Z env n (eval env e) | Seq c1 c2 => eval_cmd (eval_cmd env c1) c2 | Repeat e c => if eval env e is Zpos n then iter (Pos.to_nat n) (fun e => eval_cmd e c) env else env end. Eval compute in eval_cmd [:: 5%Z] fact. Inductive code : Set := | Cimm of Z | Cget of nat | Cadd | Cmin | Cmul | Cset of nat (* スタックの上をn番目に書き込む *) | Crep of nat (* 次のn個の命令ををスタックの上分繰り返す *) | Cnext. (* 終ったら Cnext の後ろに跳ぶ *) Fixpoint eval_code (stack : list Z) (l : list code) := match l with | nil => stack | c :: l' => let stack' := match c, stack with | Cimm x, _ => x :: stack | Cget n, _ => nth 0 stack n :: stack | Cadd, x :: y :: st => x+y :: st | Cmin, x :: st => 0-x :: st | Cmul, x :: y :: st => x*y :: st | Cset n, x :: st => set_nth 0%Z st n x | Crep _, Zpos n :: st => (* seq の iter を使う *) iter (Pos.to_nat n) (fun st => eval_code st l') st | Crep _, _ :: st => st | Cnext, _ => stack | _, _ => nil end%Z in match c with | Crep n => eval_drop n stack' l' | Cnext => stack' | _ => eval_code stack' l' end end with eval_drop n st (l : list code) := (* 相互再帰 *) match l, n with | _ :: l', 0 => eval_code st l' | _ :: l', S n' => eval_drop n' st l' | [::], _ => st end. Fixpoint compile d (e : expr) : list code := match e with | Cst x => [:: Cimm x] | Var n => [:: Cget (d+n)] | Add e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cadd] | Min e1 => compile d e1 ++ [:: Cmin] | Mul e1 e2 => compile d e2 ++ compile (S d) e1 ++ [:: Cmul] end. Fixpoint compile_cmd (c : cmd) : list code := match c with | Assign n e => compile 0 e ++ [:: Cset n] | Seq c1 c2 => compile_cmd c1 ++ compile_cmd c2 | Repeat e c => let l := compile_cmd c in compile 0 e ++ [:: Crep (length l)] ++ l ++ [:: Cnext] end. Eval compute in compile_cmd fact. Eval compute in eval_code [:: 5%Z] (compile_cmd fact). Definition neutral c := match c with Cnext | Crep _ => false | _ => true end. Inductive balanced : list code -> Prop := | Bneutral : forall c, neutral c = true -> balanced [:: c] | Bcat : forall l1 l2, balanced l1 -> balanced l2 -> balanced (l1 ++ l2) | Brep : forall l, balanced l -> balanced (Crep (length l) :: l ++ [:: Cnext]). Lemma eval_drop_cat st l1 l2 : eval_drop (length l1) st (l1 ++ Cnext :: l2) = eval_code st l2. Admitted. Check eq_iter. Lemma eval_code_cat stack (l1 l2 : seq code) : balanced l1 -> eval_code stack (l1 ++ l2) = eval_code (eval_code stack l1) l2. Admitted. Hint Constructors balanced. Lemma compile_balanced n e : balanced (compile n e). Proof. by elim: e n => /=; auto. Qed. Theorem compile_correct e d stack : eval_code stack (compile d e) = eval (drop d stack) e :: stack. Admitted. Lemma compile_cmd_balanced c : balanced (compile_cmd c). Proof. by elim: c => /=; auto using compile_balanced. Qed. Hint Resolve compile_balanced compile_cmd_balanced. Theorem compile_cmd_correct c stack : eval_code stack (compile_cmd c) = eval_cmd stack c. Admitted. End Iterator. Extraction Iterator.eval_code.