Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
From mathcomp Require Import all_ssreflect.
(* fintype *)
Check ord0 : 'I_1.
Goal #|'I_3| = 3.
by rewrite card_ord.
Abort.
Goal [seq val i | i <- enum 'I_3] = [:: 0; 1; 2].
rewrite enumT /=.
rewrite unlock /=.
by rewrite val_ord_enum.
Abort.
(* 名古屋大学 2013 *)
Section Nagoya2013.
Definition Sk k n :=
\sum_(1<=i 1.
Definition Tm n :=
\sum_(1<=k i H.
by rewrite Sk1 muln1.
rewrite big_mkord.
congr (_ - _).
apply eq_bigr => i _.
by rewrite !exp1n !muln1.
Qed.
Check subn1.
Check (fun m n => addKn m n).
Check subnDA.
Check addnBA.
Check subnK.
Check prednK.
Check exp1n.
Check expn0.
Check expn1.
Check expn_gt0.
Check ltn_exp2r.
Check leq_pexp2l.
Lemma Tm2 : Tm 2 = 3^m - 3.
Proof.
rewrite /Tm.
have Hm': m > 0 by apply ltnW.
have ->: 3^m - 3 = 2^m - 2 + (3^m - 1 - 2^m).
admit.
rewrite -Tm1.
rewrite [in 3^m](_ : 3 = 1+2) //.
rewrite Pascal.
transitivity (Tm 1 + (\sum_(1 <= k < m) 'C(m,k) * 2^k)).
rewrite -big_split /=.
apply eq_bigr => i _.
rewrite /Sk !big_cons !big_nil.
by rewrite !addn0 -mulnDr.
congr (_ + _).
transitivity ((\sum_(0 <= k < m.+1) 'C(m,k) * 2^k) - 1 - 2^m).
Admitted.
Theorem Tmn n : Tm n.+1 = n.+2 ^ m - n.+2.
Proof.
elim:n => [|n IHn] /=.
by apply Tm1.
have Hm': m > 0 by apply ltnW.
have ->: n.+3^m - n.+3 = n.+2^m - n.+2 + (n.+3^m - 1 - n.+2^m).
Admitted.
Theorem Skp p k : p > 2 -> prime p -> 1 <= k < p.-1 -> p %| Sk k p.-1.
Admitted.
End Nagoya2013.