The "scrap your boilerplate" approach to generic programming allows the programmer to generic functions that can traverse arbitrary data structures, and yet have type-specific cases. However, the approach requires all the type-specific cases to be supplied at once, when the function is defined: the function is closed. In contrast, Haskell's type classes support open, or extensible functions, that can be extended with new type-specific cases as new data types are defined. In this paper we show how to extend the scrap-your-boilerplate approach to support this open style. On the way we demonstrate the desirablility of abstraction over type classes, and the usefulness of recursive dictionaries.
We extend the "scrap your boilerplate" style of generic programming in Haskell to accomplish an additional range of applications. This includes several forms of serialisation and de-serialisation, test-set generation, type validation, and type erasure. To this end, we provide a well-designed reflection API for datatypes and constructors, and we also provide more general means of extending generic functions for given monomorphic or polymorphic types. The presented approach is readily supported in the GHC implementation of Haskell.
We describe a design pattern that for writing programs that traverse data structures built from rich mutually-recursive data types. Such programs often have a great deal of "boilerplate" code that simply walks the structure, hiding a small amount of "real" code that constitutes the reason for the traversal.Our technique allows most of this boilerplate to be written once and for all (perhaps even mechanically generated), leaving the programmer free to concentrate on the important part of the algorithm. These generic programs are much more robust to data structure evolution because they contain many fewer lines of type-specific code.
Our approach is simple to understand, reasonably efficient, and it handles all the data types found in conventional functional programming languages. It makes essential use of rank-2 polymorphism, an extension found in some implementations of Haskell.