Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Combinatorial Geometry
k-sets
H. Edelsbrunner, P. Valtr and E. Welzl.
Cutting dense point sets in half.
Discrete Comput. Geom.17 (1997), 243-255.
T. R. Dey and H. Edelsbrunner.
Counting triangle crossings and halving planes.
Discrete Comput. Geom.12 (1994), 281-289.
B. Aronov, B. Chazelle, H. Edelsbrunner, L. J. Guibas,
M. Sharir and R. Wenger.
Points and triangles in the plane and halving planes in space.
Discrete Comput. Geom.6 (1991), 435-442.
H. Edelsbrunner and G. Stockl.
The number of extreme pairs of finite point-sets in Euclidean spaces.
J. Combin. Theory Ser. A43 (1986), 344-349.
H. Edelsbrunner and E. Welzl.
Constructing belts in two-dimensional arrangements with applications.
SIAM J. Comput.15 (1986), 271-284.
H. Edelsbrunner and E. Welzl.
On the number of line separations of a finite set in the plane.
J. Combin. Theory Ser. A38 (1985), 15-29.
Envelopes and transversals
H. Edelsbrunner.
The upper envelope of piecewise linear functions: tight bounds
on the number of faces.
Discrete Comput. Geom.4 (1989), 337-343.
H. Edelsbrunner, L. J. Guibas and M. Sharir.
The upper envelope of piecewise linear functions: algorithms
and applications.
Discrete Comput. Geom.4 (1989), 311-336.
H. Edelsbrunner, J. Pack, J. T. Schwartz and M. Sharir.
On the lower envelope of bivariate functions and its applications.
In ``Proc. 28th Ann. IEEE Sympos. Found. Comput. Sci.
1987'', 27-37.
H. Edelsbrunner.
Finding transversals for sets of simple geometric figures.
Theoret. Comput. Sci.35 (1985), 55-69.
H. Edelsbrunner, H. A. Maurer, F. P. Preparata, A. L. Rosenberg,
E. Welzl and D. Wood.
Stabbing line segments.
BIT22 (1982), 274-281.
Distances
H. Edelsbrunner and P. Hajnal.
A lower bound on the number of unit distances between the vertices
of a convex polygon.
J. Combin. Theory Ser. A56 (1991), 312-316.
H. Edelsbrunner and M. Sharir.
A hyperplane incidence problem with applications to counting distances.
Applied Geometry and Discrete Mathematics. The Victor Klee
Festschrift, 253-263, ed.: P. Gritzmann and B. Sturmfels,
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 1991.
H. Edelsbrunner and S. S. Skiena.
On the number of furthest neighbour pairs in a point set.
Amer. Math. Monthly96 (1989), 614-618.
Other extremal problems
B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas,
M. Sharir and E. Welzl.
Improved bounds on weak epsilon-nets for convex sets.
Discrete Comput. Geom.13 (1995), 1-15.
H. Edelsbrunner, A. D. Robison and X. J. Shen.
Covering convex sets with non-overlapping polygons.
Discrete Math.81 (1990), 153-164.
H. Edelsbrunner and M. Sharir.
The maximum number of ways to stab n convex nonintersecting
sets in the plane is 2n-2.
Discrete Comput. Geom.5 (1990), 35-42.
H. Edelsbrunner, M. H. Overmars, E. Welzl,
I. Ben-Arroyo Hartman and J. A. Feldman.
Ranking intervals under visibility constraints.
Internat. J. Comput. Math.34 (1990), 129-144.
H. Edelsbrunner, N. Hasan, R. Seidel and X. J. Shen.
Circles through two points that always enclose many points.
Geometriae Dedicata32 (1989), 1-12.
B. Chazelle, H. Edelsbrunner and L. J. Guibas.
The complexity of cutting complexes.
Discrete Comput. Geom.4 (1989), 139-182.
H. Edelsbrunner and X. J. Shen.
A tight lower bound on the size of visibility graphs.
Inform. Process. Lett.26 (1987), 61-64.
H. Edelsbrunner and J. W. Jaromczyk.
How often can you see yourself in a convex configuration of mirrors?
Congressus Numerantium53 (1986), 193-200.