Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Geometric Algorithms
Paradigms and Methods
B. Chazelle, H. Edelsbrunner, L. J. Guibas and M. Sharir.
Algorithms for bichromatic line segment problems and polyhedral
terrains.
Algorithmica11 (1994), 116-132.
B. Chazelle, H. Edelsbrunner, L. J. Guibas and M. Sharir.
Diameter, width, closest line pair, and parametric searching.
Discrete Comput. Geom.10 (1993), 183-196.
B. Chazelle, H. Edelsbrunner, L. J. Guibas and M. Sharir.
A singly exponential stratification scheme for real
semi-algebraic varieties and its applications.
Theoret. Comput. Sci.84 (1991), 77-105.
H. Edelsbrunner and E. P. Mucke.
Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithms.
ACM Trans. Graphics9 (1990), 66-104.
pdf-file
H. Edelsbrunner and M. H. Overmars.
Batched dynamic solutions to decomposable searching problems.
J. Algorithms6 (1985), 515-542.
pdf-file
H. Edelsbrunner, M. H. Overmars and R. Seidel.
Some methods of computational geometry applied to computer graphic.
Comput. Vision, Graphics, Image Process.28
(1984), 92-108.
H. Edelsbrunner, M. H. Overmars and D. Wood.
Graphics in Flatland: a case study.
Advances in Computing ResearchVol. 1,
35-59, ed.: F. P. Preparata, Jai Press, London, 1983.
Convex Hulls and Convex Sets
H. Edelsbrunner and W. Shi.
An O(n log^2 h) time algorithm for the three-dimensional
convex hull problem.
SIAM J. Comput.20 (1991), 259-269.
D. P. Dobkin, H. Edelsbrunner and M. H. Overmars.
Searching for empty convex polygons.
Algorithmica5 (1990), 561-571.
D. P. Dobkin, H. Edelsbrunner and C. K. Yap.
Probing convex polytopes.
Autonomous Robot Vehicles, 328-341, ed.: I. J. Cox
and G. T. Wilfong, Springer-Verlag, New York, 1990.
H. Edelsbrunner and S. S. Skiena.
Probing convex polygons with x-rays.
SIAM J. Comput.17 (1988), 870-882.
H. Edelsbrunner and F. P. Preparata.
Minimum polygonal separation.
Inform. and Comput.77 (1988), 218-232.
H. Edelsbrunner and R. Waupotitsch.
Computing a ham-sandwich cut in two dimensions.
J. Symbolic Comput.2 (1986), 171-178.
Distance and Proximity
A. Aggarwal, H. Edelsbrunner, P. Raghavan and P. Tiwari.
Optimal time bounds for some proximity problems in the plane.
Inform. Process. Lett.42 (1992), 55-60.
P. K. Agarwal, H. Edelsbrunner, O. Schwarzkopf and E. Welzl.
Euclidean minimum spanning trees and bichromatic closest pairs.
Discrete Comput. Geom.6 (1991), 407-422.
H. Edelsbrunner, G. Rote and E. Welzl.
Testing the necklace condition for shortest tours and optimal
factors in the plane.
Theoret. Comput. Sci.66 (1989), 157-180.
B. Chazelle and H. Edelsbrunner.
An improved algorithm for constructing kth-order Voronoi diagrams.
IEEE Trans. Comput.C-36 (1987), 1349-1354.
H. Edelsbrunner and R. Seidel.
Voronoi diagrams and arrangements.
Discrete Comput. Geom.1 (1986), 25-44.
W. H. E. Day and H. Edelsbrunner.
Investigation of proportional link linkage clustering methods.
J. Classification2 (1985), 239-254.
H. Edelsbrunner.
Computing the extreme distances between two convex polygons.
J. Algorithms6 (1985), 213-224.
W. H. E. Day and H. Edelsbrunner.
Efficient algorithms for agglomerative hierarchical clustering
methods.
J. Classification1 (1984), 7-24.
H. Edelsbrunner, J. O'Rourke and E. Welzl.
Stationing guards in rectilinear art galleries.
Comput. Vision, Graphics, Image Process.28
(1984), 167-176.
F. Aurenhammer and H. Edelsbrunner.
An optimal algorithm for constructing the weighted Voronoi
diagram in the plane.
Pattern Recognition17 (1984), 251-257.