Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
(* ========================================================================= *)
(* Prenex and Skolem normal forms. *)
(* *)
(* Copyright (c) 2003, John Harrison. (See "LICENSE.txt" for details.) *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Routine simplification. Like "psimplify" but with quantifier clauses. *)
(* ------------------------------------------------------------------------- *)
let simplify1 fm =
match fm with
Forall(x,p) -> if mem x (fv p) then fm else p
| Exists(x,p) -> if mem x (fv p) then fm else p
| _ -> psimplify1 fm;;
let rec simplify fm =
match fm with
Not p -> simplify1 (Not(simplify p))
| And(p,q) -> simplify1 (And(simplify p,simplify q))
| Or(p,q) -> simplify1 (Or(simplify p,simplify q))
| Imp(p,q) -> simplify1 (Imp(simplify p,simplify q))
| Iff(p,q) -> simplify1 (Iff(simplify p,simplify q))
| Forall(x,p) -> simplify1(Forall(x,simplify p))
| Exists(x,p) -> simplify1(Exists(x,simplify p))
| _ -> fm;;
(* ------------------------------------------------------------------------- *)
(* Example. *)
(* ------------------------------------------------------------------------- *)
START_INTERACTIVE;;
simplify <<(forall x y. P(x) \/ (P(y) /\ false)) ==> exists z. P(z)>>;;
END_INTERACTIVE;;
(* ------------------------------------------------------------------------- *)
(* Negation normal form. *)
(* ------------------------------------------------------------------------- *)
let rec nnf fm =
match fm with
And(p,q) -> And(nnf p,nnf q)
| Or(p,q) -> Or(nnf p,nnf q)
| Imp(p,q) -> Or(nnf(Not p),nnf q)
| Iff(p,q) -> Or(And(nnf p,nnf q),And(nnf(Not p),nnf(Not q)))
| Not(Not p) -> nnf p
| Not(And(p,q)) -> Or(nnf(Not p),nnf(Not q))
| Not(Or(p,q)) -> And(nnf(Not p),nnf(Not q))
| Not(Imp(p,q)) -> And(nnf p,nnf(Not q))
| Not(Iff(p,q)) -> Or(And(nnf p,nnf(Not q)),And(nnf(Not p),nnf q))
| Forall(x,p) -> Forall(x,nnf p)
| Exists(x,p) -> Exists(x,nnf p)
| Not(Forall(x,p)) -> Exists(x,nnf(Not p))
| Not(Exists(x,p)) -> Forall(x,nnf(Not p))
| _ -> fm;;
(* ------------------------------------------------------------------------- *)
(* Example of NNF function in action. *)
(* ------------------------------------------------------------------------- *)
START_INTERACTIVE;;
let fm = <<(forall x. P(x))
==> ((exists y. Q(y)) <=> exists z. P(z) /\ Q(z))>> in
nnf fm;;
let andrews =
<<((exists x. forall y. P(x) <=> P(y)) <=>
((exists x. Q(x)) <=> (forall y. Q(y)))) <=>
((exists x. forall y. Q(x) <=> Q(y)) <=>
((exists x. P(x)) <=> (forall y. P(y))))>> in
nnf andrews;;
END_INTERACTIVE;;
(* ------------------------------------------------------------------------- *)
(* Prenex normal form. *)
(* ------------------------------------------------------------------------- *)
let mk_all x p = Forall(x,p) and mk_ex x p = Exists(x,p);;
let mk_and p q = And(p,q) and mk_or p q = Or(p,q);;
let rec pullquants fm =
match fm with
And(Forall(x,p),Forall(y,q)) -> pullquant_2 fm mk_all mk_and x y p q
| Or(Exists(x,p),Exists(y,q)) -> pullquant_2 fm mk_ex mk_or x y p q
| And(Forall(x,p),q) -> pullquant_l fm mk_all mk_and x p q
| And(p,Forall(x,q)) -> pullquant_r fm mk_all mk_and x p q
| Or(Forall(x,p),q) -> pullquant_l fm mk_all mk_or x p q
| Or(p,Forall(x,q)) -> pullquant_r fm mk_all mk_or x p q
| And(Exists(x,p),q) -> pullquant_l fm mk_ex mk_and x p q
| And(p,Exists(x,q)) -> pullquant_r fm mk_ex mk_and x p q
| Or(Exists(x,p),q) -> pullquant_l fm mk_ex mk_or x p q
| Or(p,Exists(x,q)) -> pullquant_r fm mk_ex mk_or x p q
| _ -> fm
and pullquant_l fm quant op x p q =
let x' = variant x (fv fm) in
quant x' (pullquants(op (formsubst (x := Var x') p) q))
and pullquant_r fm quant op x p q =
let x' = variant x (fv fm) in
quant x' (pullquants(op p (formsubst (x := Var x') q)))
and pullquant_2 fm quant op x y p q =
let x' = variant x (fv fm) in
quant x' (pullquants(op (formsubst (x := Var x') p)
(formsubst (y := Var x') q)));;
let rec prenex fm =
match fm with
Forall(x,p) -> Forall(x,prenex p)
| Exists(x,p) -> Exists(x,prenex p)
| And(p,q) -> pullquants(And(prenex p,prenex q))
| Or(p,q) -> pullquants(Or(prenex p,prenex q))
| _ -> fm;;
let pnf fm = prenex(nnf(simplify fm));;
(* ------------------------------------------------------------------------- *)
(* Example. *)
(* ------------------------------------------------------------------------- *)
START_INTERACTIVE;;
pnf < exists y z. Q(y) \/ ~(exists z. P(z) /\ Q(z))>>;;
END_INTERACTIVE;;
(* ------------------------------------------------------------------------- *)
(* Get the functions in a term and formula. *)
(* ------------------------------------------------------------------------- *)
let rec funcs tm = match tm with
Var x -> []
| Fn(f,args) -> itlist (union ** funcs) args [f,length args];;
let functions fm =
atom_union (fun (R(p,a)) -> itlist (union ** funcs) a []) fm;;
(* ------------------------------------------------------------------------- *)
(* Core Skolemization function. *)
(* ------------------------------------------------------------------------- *)
let rec skolem fm corr =
match fm with
Exists(y,p) ->
let xs = fv(fm)
and fns = map (fun (Fn(f,args),def) -> f) corr in
let f = variant (if xs = [] then "c_"^y else "f_"^y) fns in
let fx = Fn(f,map (fun x -> Var x) xs) in
skolem (formsubst (y := fx) p) ((fx,fm)::corr)
| Forall(x,p) -> let p',corr' = skolem p corr in Forall(x,p'),corr'
| And(p,q) -> skolem2 (fun (p,q) -> And(p,q)) (p,q) corr
| Or(p,q) -> skolem2 (fun (p,q) -> Or(p,q)) (p,q) corr
| _ -> fm,corr
and skolem2 cons (p,q) corr =
let p',corr' = skolem p corr in
let q',corr'' = skolem q corr' in
cons(p',q'),corr'';;
(* ------------------------------------------------------------------------- *)
(* Overall Skolemization function. *)
(* ------------------------------------------------------------------------- *)
let askolemize fm =
let fm1 = nnf(simplify fm) in
let corr = map (fun (n,a) -> Fn(n,[]),False) (functions fm1) in
fst(skolem fm1 corr);;
let rec specialize fm =
match fm with
Forall(x,p) -> specialize p
| _ -> fm;;
let skolemize fm = specialize(pnf(askolemize fm));;
(* ------------------------------------------------------------------------- *)
(* Example. *)
(* ------------------------------------------------------------------------- *)
START_INTERACTIVE;;
skolemize < forall u. exists v. x * u < y * v>>;;
skolemize
< (exists y z. Q(y) \/ ~(exists z. P(z) /\ Q(z)))>>;;
END_INTERACTIVE;;