Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
terateraのfirehose | スラド
[go: Go Back, main page]



パスワードを忘れた? アカウント作成

アナウンス:スラドは 2024 年 1 月 31 日で終了します。データ保存はお早めに。

17408610 comment

phasonのコメント: Re:アト秒レーザーとは別 (スコア 1) 6

by phason (#4543549) ネタ元: この木何の木極端紫外光猪木

>最初から細かい液滴出すと冷えて固体になってしまうんだろうか。

液滴というか,気化した状態に近いです.
液滴を熱衝撃波で粉砕して気化させて,そこに次弾を打ち込む感じで.
※なぜ最初から気化した金属ガスを使わないのかというと原子密度が低いからですね.ある程度大きい体積を確保して吸収効率を上げつつ,いわゆるガスレベルに拡散する前を狙うことで密度が高くなり吸光度も高い.

>液滴を粉砕してから液滴(球体?赤血球型?)が冷え切る前に表面エネルギ以上のレーザ入力で粉砕するなんてできるのか疑わしくなってきた。

そっちは余裕です.
それこそ腐るほど行われているピコ・フェムト分光なんかでは後発パルスのディレイをピコ秒・フェムト秒レベルで制御できるわけで,EUV光源のダブルパルス法におけるディレイ(1 μsぐらい)はどうとでもなるかと.
※極短時間のディレイならミラー位置ずらすとかの光路長の制御でできますし(光路長をミリ単位でずらすとピコ秒単位でディレイを変えられる),μsレベルなら電子回路レベルでもディレイを設定できるんじゃないかなあ.

17407679 comment

phasonのコメント: Re:アト秒レーザーとは別 (スコア 1) 6

by phason (#4543114) ネタ元: この木何の木極端紫外光猪木

細かいところまでは把握していなかったので,せっかくの機会ということでいくつか文献見てみました.

>特異的に13~14nm波長を出す為にターゲットにスズを使っていると理解してるので

プラズマの単なる熱輻射ではあるが,どの波長が出やすいかは励起準位などの分布に依存する.このため,13 nm前後に対応する準位の多いスズを用いると効率が高い,ということのようです.
(理想的な黒体輻射と実際の物体の輻射の違い,というのと同じ話のようです)

>単なるプラズマ光源なら2回照射する必要ない気がする。

こちらに関しては,単発のパルスで強烈なレーザーを照射しても吸収効率が悪く,プラズマの生成・加熱に回る熱が少ないので,最初の一発目でいい感じのサイズに粉砕して本パルスを吸収しやすいクラスターサイズに変換,そこに本パルスを照射することで効率を上げる,という感じのようです.

17406546 comment

phasonのコメント: アト秒レーザーとは別 (スコア 1) 6

by phason (#4542537) ネタ元: この木何の木極端紫外光猪木

EUV光源の原理はアト秒レーザーとは別だったはず.
アト秒レーザーはパルス幅を狭くしないといけないのでトリッキーな現象を使用しているけど,EUVの光源はパルス幅は広くて良いからもっと輝度の高い光源が必要なので,集光したパルスレーザーで加熱した数十万度ぐらい?(確か)のプラズマを使用していたかと思います.要するに,(非常に温度が高いことを除けば)単なる黒体輻射です.

17327572 comment

harupunteのコメント: Re:一包化 (スコア 1) 4

by harupunte (#4531081) ネタ元: ピルケース

そんな希望ができるんですね。
私の場合、朝昼晩で飲むパターンが違うのでやや面倒くさそうですが。
お薬カレンダーはアプリでも使おうかと思っていましたが、意外とアプリって面倒で冊子媒体がなんだかんだと良いなと思っています。
アプリは通知してくれるのでいいのですが他の通知に紛れてしまってイマイチかと思ったり。

17324252 journal
日記

harupunteの日記: ピルケース 4

日記 by harupunte

しばらくたくさんお薬を飲まなければならない
食前食後に3色種類がちがう錠剤を大量に飲んだりするので、「ちょっとしたお出かけ用」「カバンに入れる通勤常備用」「家用」にピルケースが欲しいなと色々と検索している。
とりあえずダイソーで買ってきたもので間に合わせていますが、せっかくなので携帯用は飲み忘れしずらく目に付くようにスマホのストラップ型なんかがいいなと思い、なんかカッコイイのがいいなと探していますが、当たり前ですがどれも余り量が入らない。
なんかいいのないかなぁ。
家用は今のところ病院で出された袋からガサガサと出していますが、これも猫の給餌機よろしくボタンおしたら必要量がざらざらでて来るの……とまでは行かないですが面白いの無いかなあ

17311763 journal
日記

harupunteの日記: カチカチ山のエクスプローラー

日記 by harupunte

Windowsのエクスプローラー
検索結果を放置しておくと15分おきぐらいにカチッ カチッって鳴るの何なんだろう
なんのために音を鳴らしているのか謎だけど微妙に鬱陶しいので止めてくれないかなぁ……とどこかに方法はありそうだけれど

16729917 comment

phasonのコメント: Re:バルクプラズモンとパインズデーモン (スコア 3, 参考になる) 22

>質量と-電荷を持った電子が結合したとして、なぜ質量0、電気的に中性になってしまうのか?

電子の電荷がゼロになったり,ではなく,集団での励起状態の電荷がゼロ,と思うとわかりやすいかもしれません.
以下,ちょっと正確ではない話にはなりますが……

今回の例(などのPines' demon)では,異なる2つのバンドが存在し,しかも両者が独立であるような金属を考えます.妥当かどうかわかりませんが,原子のs軌道由来のバンドとd軌道由来のバンドが存在して,両者が混合せず独立に存在しているような場合です.

いま,原子が1列に並んでいる状況を考えます.

-〇-〇-〇-〇-〇-〇-〇-〇-〇-〇-〇-

ここで,s軌道由来のバンドに電子が入っているわけですが,最初の状態としては(均一な一次元鎖なので)全原子に同じような電荷密度で電子が入っていると考えるのが自然でしょう.同様に,d軌道由来のバンドにも均一に電子が入っているとしましょう.

s軌道由来のバンド:-●-●-●-●-●-●-●-●-●-●-
d軌道由来のバンド:-●-●-●-●-●-●-●-●-●-●-

ここで,ある種の励起状態として,「s軌道由来のバンドでは,奇数番目の原子上に電子が寄ってきて,d軌道由来のバンドでは逆に偶数番目の原子上に電子が集まる」というようなものを考えることができます.

s軌道由来のバンド:-●-〇-●-〇-●-〇-●-〇-●-〇-
d軌道由来のバンド:-〇-●-〇-●-〇-●-〇-●-〇-●-

この時の「電子の分布の,もともとの状態からのズレ」,もうちょっと具体的に言うと「奇数番目の原子上でs軌道の電子の密度を上げ&d軌道の電子の密度を下げ,偶数番目の原子上でs軌道の電子の密度を下げ&d軌道の電子の密度を上げ」るという「ズレかた」を「新しい粒子」とみなすことができます.

この新しい粒子がゼロ個の状態 → 全原子上でs軌道由来のバンドの電子密度が均一
この新しい粒子が1個の状態 → 奇数番原子でs軌道由来のバンドの電子密度+0.1,偶数番原子でs軌道由来のバンドの電子密度-0.1
この新しい粒子が2個の状態 → 奇数番原子でs軌道由来のバンドの電子密度+0.2,偶数番原子でs軌道由来のバンドの電子密度-0.2
(同様に,d軌道由来のバンドでも電子密度が対応して増減)

というような感じです.
では,この「粒子」の「電荷」はいくつでしょうか?
この「粒子」が増えても,原子上の電荷の量は変わりません.ある原子上ではsバンドの電子が増えるものの代わりにdバンドの電子が減るのでプラマイゼロ,別の原子上では逆にsバンドの電子が減るがdバンドの電子が増えるのでやっぱりプラマイゼロになるためです.
相変わらず「電子」は電荷を持っていますが,この「電子の分布の変化を粒子とみなしたもの」は,増えたり移動したりしても電荷の分布に何も影響を与えないわけですから,電荷を持たない粒子である,といえます.

質量に関しては,この励起を起こすのに必要な最低エネルギーがあるかどうか,という話になりますが,準粒子ではしばしば質量ゼロの準粒子=ギャップレスな励起(最小の励起に必要なエネルギーが無限小)の準粒子が生じます.
例えば原子の集団振動を粒子とみなしたフォノンとか,磁性体におけるスピンの揺らぎを粒子とみなしたマグノンなどちょくちょく質量ゼロの準粒子が生じます.
なお,質量ゼロというのは,無限に小さい力でとんでもない速度に加速できる,というよなことを意味するわけではありません.

typodupeerror

物事のやり方は一つではない -- Perlな人

読み込み中...