Julia Evans wrote a post recently titled “Machine learning isn’t Kaggle competitions“. It was an interesting post because it pointed out an important truth. If you want to solve business problems using machine learning, doing well at Kaggle competitions is not a good indicator of that skills. The rationale is that the work required to do well in a Kaggle competition is only a piece of what is requ
情報系の国際学会の多くでは、研究発表に加えてチュートリアル・セッションが設けられています。チュートリアルではホットなテーマの基礎から応用までが扱われ、要点を絞ってわかりやすく解説されており、初心者の入門には最適です。 学会に参加してチュートリアルを受けなくても、多くの場合はその内容を知ることができます。その概要は必ず会議のプログラムに掲載されますし、発表者がスライドを Web にアップロードすることも多く、発表の様子がビデオ配信されることもあります。 オンラインに情報があることは多いとはいえ、それらは基本的には分散しています。会議のウェブサイトにはチュートリアル一覧が載っています。しかし、そこから発表者によるチュートリアルサイトにリンクが貼られていることは少なく、スライドの情報もないことが多い。これは非常に不便です。 というわけで、2013年の情報系主要国際会議で行われたチュートリアルのタ
こんにちは.Machine Learning Advent Calendar (MLAC) 2013の14日目を担当します,[twitter:@kisa12012]です.普段は博士学生として,各地を放浪しながら機械学習の研究をしてます.今回の記事はボストンで執筆しています.現地時間(EST)での締切は守ったのでセーフ…ですよね? 本日は機械学習の技術的な内容の話ではなく,筆者が実践している機械学習関連の情報収集方法について纏めます*1.大きく分けて,学会情報の管理・論文情報の収集・その他の三種について述べたいと思います.今回のトピックの多くは他の分野にも通用する話になっているかと思います.他の分野の方がどのように情報収集されているのかも気になるところです. 学会情報の管理 まずは学会情報の管理についてです.機械学習に関連するカンファレンスは(特に近年乱立気味で)非常に沢山あります.全てをチ
メディアや他の方がいくつか報告を上げているが、土曜日に『ロボットは東大に入れるか』の講演を聞きに行ったので気づいたことなどをメモしておこう。 人工知能にとっては、センター数学よりも東大二次数学の方が解きやすいことや、図形や文の構造を理解することがどうしようもなく難しいことなど、AIと人間の違いに関するいくつかの側面を興味深く受け取った。 「人間のように思考する」といった曖昧で高すぎる目標ではなく到達度を客観的に評価しやすい入試問題をターゲットに選んだのはよい着眼点だと思う。もし2021年までに、東大入試クラスの読解力や問題処理能力を獲得したならば、技術文書を要約したり、国会答弁を自動生成したり、様々な産業応用が可能になるだろう。 模試の結果はもっと惨憺たる有り様になると思っていたが、センター試験では 387/900、2次試験は(今回は数学のみだが)合格者平均を超えるなど、予想していたより結
Student Resources Matlab Tutorials http://www.mathworks.com/academia/student_center/tutorials/launchpad.html http://www.duke.edu/~hpgavin/matlab.html http://www.mathworks.com/access/helpdesk/help/techdoc/learn_matlab/learn_matlab.shtml Suggested Books The Elements of Statistical Learning: Data Mining, Inference, and Prediction., Hastie, Tibshirani & Friedman, Book Website Pattern Classification, 2
統計数理研究所にて行われた第2回統計的機械学習セミナーにのこのこ参加してきました。 http://groups.google.com/group/ibisml/browse_thread/thread/092f5fb3d45a91ea/8cae858cb8bfc00c 今回はノンパラメトリックベイズ特集ということでか、Yee Whye Teh さんが sequence memoizer を、持橋さんが教師無し&半教師分かち書きを話されたので、まずは sequence memoizer について自分のわかる範囲で書いてみよう。 まず、Pitman-Yor 過程については既知とする。ご存じない方は、「独断と偏見によるノンパラ入門」を読めばだいたいわか……んないか(苦笑)。 ええと、とりあえず今回必要な範囲で説明すると、G という単語の分布(ただし台は無限。つまり「独断と偏見〜」でいう「その他」
最近では企業における機械学習の認知度も高まっていてエンジニアの求人募集でも「望ましいスキル:機械学習」というのをよく見かける。特にweb系の企業だと当たり前のように機械学習を活用した魅力的なサービスが生み出されているようだ。 そんなわけで先日書いた機械学習の入門記事もそれなりに好評で末尾の教科書リストも結構参考にしていただいた様子。ということで、これから機械学習をはじめる人のためにオススメの教科書を10冊ほどピックアップしてみた。 幸いにして機械学習の分野には良書が多い。5年前はナイーブベイズすら知らなかった私も、これらの教科書のおかげでなんとか機械学習を使えるようになりました!(個人の体験談です。効果には個人差があります) 参考: 機械学習超入門 〜そろそろナイーブベイズについてひとこと言っておくか〜 - EchizenBlog-Zwei 最初に既存の機械学習の教科書まとめを挙げておくの
敵対的学習 (adversarial learning)† スパムメールの検出や,アクセスログを利用したネットワークからの侵入検出に機械学習技術が利用されている.すると,送信や侵入を企てる敵対者 (adversary) は,意図的に入力パターンを変更して,検出を回避しようとする.こうした,敵対的な環境下での利用を想定した機械学習の研究は敵対的学習 (adversarial learning) や 敵対的環境下での機械学習 (machine learning in adversarial environments) と呼ばれる. 敵対者の攻撃を検出する識別器の頑健性の評価や強化する,敵対者側の立場から識別器を回避する,そして防御側と識別器の間のゲーム理論の立場からの均衡の考察などの研究がある. ここでは,攻撃側の攻撃可能性についての文献1の研究を紹介する. スパムフィルタなどの分類器があり,
thriftとかhadoopなど,何やらいろいろと手を出してしまい,ここのところブログの更新が滞ってしまっていますが,今日は前から書きたかったトピックについて自分へのメモの意味も含めて記しておきたいと思います. はじめに 最近,といっても結構前からなのですが,海外のブログなどで「機械学習の勉強を始めるガイドライン」についてのエントリーがいくつか見られ,かつ,議論も少し盛り上がっています.僕は機械学習が好きなだけで,専門というにはほど遠いのですが,僕も一利用者としてはこのトピックに関してはとても興味があります. 機械学習というと,色々な数学的な知識が必要であったり,統計学や人工知能の知識も必要になったりしまったりと,専門的に学ぶ機会が無かった人にとっては興味が湧いてもなかなか始めるには尻込みしてしまうことかと思います.今日紹介するエントリーは,そんな方々にヒントになるような内容になっていると
もう随分経ちますが,先日CompView秋の学校というのに行き,2泊3日みっちり機会学習を勉強してきました.講師陣は豪華でどの話も面白かったのですが特にElad Hazanによる"Prediction in the dark: the multi-armed bandit problem"が非常に面白かったです. その話を説明するために,まず簡単ながら驚くべき性能を達成するアルゴリズムを紹介しましょう. 解きたい問題は,毎日,次の日の天気が晴れか雨かを予想する問題です.t日目が晴れの場合 y(t)=1, 雨の場合 y(t)=0と表すことにしましょう.t日目にy(t+1)を予想するわけです. さて、自分は天気の専門家ではないので,自分で予報せずに,専門家に頼ることにしてみます.M人の天気予報士がいて,それぞれが独自に次の日の天気を予想しています.i人目の天気予報士のt日目の予報をp(i,t)
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く