Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
lib.rs - source
[go: Go Back, main page]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.
#![warn(missing_docs, clippy::needless_borrow)]

//! [DataFusion] is an extensible query engine written in Rust that
//! uses [Apache Arrow] as its in-memory format. DataFusion's [use
//! cases] include building very fast database and analytic systems,
//! customized to particular workloads.
//!
//! "Out of the box," DataFusion quickly runs complex [SQL] and
//! [`DataFrame`] queries using a sophisticated query planner, a columnar,
//! multi-threaded, vectorized execution engine, and partitioned data
//! sources (Parquet, CSV, JSON, and Avro).
//!
//! DataFusion can also be easily customized to support additional
//! data sources, query languages, functions, custom operators and
//! more.
//!
//! [DataFusion]: https://arrow.apache.org/datafusion/
//! [Apache Arrow]: https://arrow.apache.org
//! [use cases]: https://arrow.apache.org/datafusion/user-guide/introduction.html#use-cases
//! [SQL]: https://arrow.apache.org/datafusion/user-guide/sql/index.html
//! [`DataFrame`]: dataframe::DataFrame
//!
//! # Examples
//!
//! The main entry point for interacting with DataFusion is the
//! [`SessionContext`].
//!
//! [`SessionContext`]: execution::context::SessionContext
//!
//! ## DataFrame
//!
//! To execute a query against data stored
//! in a CSV file using a [`DataFrame`]:
//!
//! ```rust
//! # use datafusion::prelude::*;
//! # use datafusion::error::Result;
//! # use datafusion::arrow::record_batch::RecordBatch;
//!
//! # #[tokio::main]
//! # async fn main() -> Result<()> {
//! let ctx = SessionContext::new();
//!
//! // create the dataframe
//! let df = ctx.read_csv("tests/data/example.csv", CsvReadOptions::new()).await?;
//!
//! // create a plan
//! let df = df.filter(col("a").lt_eq(col("b")))?
//!            .aggregate(vec![col("a")], vec![min(col("b"))])?
//!            .limit(0, Some(100))?;
//!
//! // execute the plan
//! let results: Vec<RecordBatch> = df.collect().await?;
//!
//! // format the results
//! let pretty_results = arrow::util::pretty::pretty_format_batches(&results)?
//!    .to_string();
//!
//! let expected = vec![
//!     "+---+----------------+",
//!     "| a | MIN(?table?.b) |",
//!     "+---+----------------+",
//!     "| 1 | 2              |",
//!     "+---+----------------+"
//! ];
//!
//! assert_eq!(pretty_results.trim().lines().collect::<Vec<_>>(), expected);
//! # Ok(())
//! # }
//! ```
//!
//! ## SQL
//!
//! To execute a query against a CSV file using [SQL]:
//!
//! ```
//! # use datafusion::prelude::*;
//! # use datafusion::error::Result;
//! # use datafusion::arrow::record_batch::RecordBatch;
//!
//! # #[tokio::main]
//! # async fn main() -> Result<()> {
//! let ctx = SessionContext::new();
//!
//! ctx.register_csv("example", "tests/data/example.csv", CsvReadOptions::new()).await?;
//!
//! // create a plan
//! let df = ctx.sql("SELECT a, MIN(b) FROM example WHERE a <= b GROUP BY a LIMIT 100").await?;
//!
//! // execute the plan
//! let results: Vec<RecordBatch> = df.collect().await?;
//!
//! // format the results
//! let pretty_results = arrow::util::pretty::pretty_format_batches(&results)?
//!   .to_string();
//!
//! let expected = vec![
//!     "+---+----------------+",
//!     "| a | MIN(example.b) |",
//!     "+---+----------------+",
//!     "| 1 | 2              |",
//!     "+---+----------------+"
//! ];
//!
//! assert_eq!(pretty_results.trim().lines().collect::<Vec<_>>(), expected);
//! # Ok(())
//! # }
//! ```
//!
//! ## More Examples
//!
//! There are many additional annotated examples of using DataFusion in the [datafusion-examples] directory.
//!
//! [datafusion-examples]: https://github.com/apache/arrow-datafusion/tree/main/datafusion-examples
//!
//! ## Customization and Extension
//!
//! DataFusion supports extension at many points:
//!
//! * read from any datasource ([`TableProvider`])
//! * define your own catalogs, schemas, and table lists ([`CatalogProvider`])
//! * build your own query langue or plans using the ([`LogicalPlanBuilder`])
//! * declare and use user-defined scalar functions ([`ScalarUDF`])
//! * declare and use user-defined aggregate functions ([`AggregateUDF`])
//! * add custom optimizer rewrite passes ([`OptimizerRule`] and [`PhysicalOptimizerRule`])
//! * extend the planner to use user-defined logical and physical nodes ([`QueryPlanner`])
//!
//! You can find examples of each of them in the [datafusion-examples] directory.
//!
//! [`TableProvider`]: crate::datasource::TableProvider
//! [`CatalogProvider`]: crate::catalog::catalog::CatalogProvider
//! [`LogicalPlanBuilder`]: datafusion_expr::logical_plan::builder::LogicalPlanBuilder
//! [`ScalarUDF`]: physical_plan::udf::ScalarUDF
//! [`AggregateUDF`]: physical_plan::udaf::AggregateUDF
//! [`QueryPlanner`]: execution::context::QueryPlanner
//! [`OptimizerRule`]: datafusion_optimizer::optimizer::OptimizerRule
//! [`PhysicalOptimizerRule`]: crate::physical_optimizer::optimizer::PhysicalOptimizerRule
//!
//! # Code Organization
//!
//! ## Overview  Presentations
//!
//! The following presentations offer high level overviews of the
//! different components and how they interact together.
//!
//! - [Apr 2023]: The Apache Arrow DataFusion Architecture talks
//!   - _Query Engine_: [recording](https://youtu.be/NVKujPxwSBA) and [slides](https://docs.google.com/presentation/d/1D3GDVas-8y0sA4c8EOgdCvEjVND4s2E7I6zfs67Y4j8/edit#slide=id.p)
//!   - _Logical Plan and Expressions_: [recording](https://youtu.be/EzZTLiSJnhY) and [slides](https://docs.google.com/presentation/d/1ypylM3-w60kVDW7Q6S99AHzvlBgciTdjsAfqNP85K30)
//!   - _Physical Plan and Execution_: [recording](https://youtu.be/2jkWU3_w6z0) and [slides](https://docs.google.com/presentation/d/1cA2WQJ2qg6tx6y4Wf8FH2WVSm9JQ5UgmBWATHdik0hg)
//! - [February 2021]: How DataFusion is used within the Ballista Project is described in \*Ballista: Distributed Compute with Rust and Apache Arrow: [recording](https://www.youtube.com/watch?v=ZZHQaOap9pQ)
//! - [July 2022]: DataFusion and Arrow: Supercharge Your Data Analytical Tool with a Rusty Query Engine: [recording](https://www.youtube.com/watch?v=Rii1VTn3seQ) and [slides](https://docs.google.com/presentation/d/1q1bPibvu64k2b7LPi7Yyb0k3gA1BiUYiUbEklqW1Ckc/view#slide=id.g11054eeab4c_0_1165)
//! - [March 2021]: The DataFusion architecture is described in _Query Engine Design and the Rust-Based DataFusion in Apache Arrow_: [recording](https://www.youtube.com/watch?v=K6eCAVEk4kU) (DataFusion content starts [~ 15 minutes in](https://www.youtube.com/watch?v=K6eCAVEk4kU&t=875s)) and [slides](https://www.slideshare.net/influxdata/influxdb-iox-tech-talks-query-engine-design-and-the-rustbased-datafusion-in-apache-arrow-244161934)
//! - [February 2021]: How DataFusion is used within the Ballista Project is described in \*Ballista: Distributed Compute with Rust and Apache Arrow: [recording](https://www.youtube.com/watch?v=ZZHQaOap9pQ)
//!
//! ## Architecture
//!
//! DataFusion is a fully fledged query engine capable of performing complex operations.
//! Specifically, when DataFusion receives an SQL query, there are different steps
//! that it passes through until a result is obtained. Broadly, they are:
//!
//! 1. The string is parsed to an Abstract syntax tree (AST) using [sqlparser].
//! 2. The planner [`SqlToRel`] converts logical expressions on the AST to logical expressions [`Expr`]s.
//! 3. The planner [`SqlToRel`] converts logical nodes on the AST to a [`LogicalPlan`].
//! 4. [`OptimizerRule`]s are applied to the [`LogicalPlan`] to optimize it.
//! 5. The [`LogicalPlan`] is converted to an [`ExecutionPlan`] by a [`PhysicalPlanner`]
//! 6. The [`ExecutionPlan`]is executed against data through the [`SessionContext`]
//!
//! With the [`DataFrame`] API, steps 1-3 are not used as the DataFrame builds the [`LogicalPlan`] directly.
//!
//! Phases 1-5 are typically cheap when compared to phase 6, and thus DataFusion puts a
//! lot of effort to ensure that phase 6 runs efficiently and without errors.
//!
//! DataFusion's planning is divided in two main parts: logical planning and physical planning.
//!
//! ### Logical planning
//!
//! Logical planning yields [`LogicalPlan`]s and logical [`Expr`]
//! expressions which are [`Schema`]aware and represent statements
//! whose result is independent of how it should physically be
//! executed.
//!
//! A [`LogicalPlan`] is a Directed Acyclic Graph (DAG) of other
//! [`LogicalPlan`]s, and each node contains [`Expr`]s.  All of these
//! are located in [`datafusion_expr`] module.
//!
//! ### Physical planning
//!
//! An [`ExecutionPlan`] (sometimes referred to as a "physical plan")
//! is a plan that can be executed against data. Compared to a
//! logical plan, the physical plan has concrete information about how
//! calculations should be performed (e.g. what Rust functions are
//! used) and how data should be loaded into memory.
//!
//! [`ExecutionPlan`]s uses the [Apache Arrow] format as its in-memory
//! representation of data, through the [arrow] crate. The [arrow]
//! crate documents how the memory is physically represented.
//!
//! A [`ExecutionPlan`] is composed by nodes (which each implement the
//! [`ExecutionPlan`] trait). Each node can contain physical
//! expressions ([`PhysicalExpr`]) or aggreagate expressions
//! ([`AggregateExpr`]).  All of these are located in the
//! [`physical_plan`] module.
//!
//! Broadly speaking,
//!
//! * an [`ExecutionPlan`] receives a partition number and
//!   asynchronously returns an iterator over [`RecordBatch`] (a
//!   node-specific struct that implements [`RecordBatchReader`])
//! * a [`PhysicalExpr`] receives a [`RecordBatch`]
//!   and returns an [`Array`]
//! * an [`AggregateExpr`] receives a series of [`RecordBatch`]es
//!   and returns a [`RecordBatch`] of a single row(*)
//!
//! (*) Technically, it aggregates the results on each partition and then merges the results into a single partition.
//!
//! The following physical nodes are currently implemented:
//!
//! * Projection: [`ProjectionExec`](physical_plan::projection::ProjectionExec)
//! * Filter: [`FilterExec`](physical_plan::filter::FilterExec)
//! * Grouped and non-grouped aggregations: [`AggregateExec`](physical_plan::aggregates::AggregateExec)
//! * Hash Join: [`HashJoinExec`](physical_plan::joins::HashJoinExec)
//! * Cross Join: [`CrossJoinExec`](physical_plan::joins::CrossJoinExec)
//! * Sort Merge Join: [`SortMergeJoinExec`](physical_plan::joins::SortMergeJoinExec)
//! * Union: [`UnionExec`](physical_plan::union::UnionExec)
//! * Sort: [`SortExec`](physical_plan::sorts::sort::SortExec)
//! * Coalesce partitions: [`CoalescePartitionsExec`](physical_plan::coalesce_partitions::CoalescePartitionsExec)
//! * Limit: [`LocalLimitExec`](physical_plan::limit::LocalLimitExec) and [`GlobalLimitExec`](physical_plan::limit::GlobalLimitExec)
//! * Scan CSV: [`CsvExec`](physical_plan::file_format::CsvExec)
//! * Scan Parquet: [`ParquetExec`](physical_plan::file_format::ParquetExec)
//! * Scan Avro: [`AvroExec`](physical_plan::file_format::AvroExec)
//! * Scan newline-delimited JSON: [`NdJsonExec`](physical_plan::file_format::NdJsonExec)
//! * Scan from memory: [`MemoryExec`](physical_plan::memory::MemoryExec)
//! * Explain the plan: [`ExplainExec`](physical_plan::explain::ExplainExec)
//!
//! Future topics (coming soon):
//! * Analyzer Rules
//! * Resource management (memory and disk)
//!
//! [sqlparser]: https://docs.rs/sqlparser/latest/sqlparser
//! [`SqlToRel`]: sql::planner::SqlToRel
//! [`Expr`]: datafusion_expr::Expr
//! [`LogicalPlan`]: datafusion_expr::LogicalPlan
//! [`OptimizerRule`]: optimizer::optimizer::OptimizerRule
//! [`ExecutionPlan`]: physical_plan::ExecutionPlan
//! [`PhysicalPlanner`]: physical_plan::PhysicalPlanner
//! [`Schema`]: arrow::datatypes::Schema
//! [`datafusion_expr`]: datafusion_expr
//! [`PhysicalExpr`]: physical_plan::PhysicalExpr
//! [`AggregateExpr`]: physical_plan::AggregateExpr
//! [`RecordBatch`]: arrow::record_batch::RecordBatch
//! [`RecordBatchReader`]: arrow::record_batch::RecordBatchReader
//! [`Array`]: arrow::array::Array

/// DataFusion crate version
pub const DATAFUSION_VERSION: &str = env!("CARGO_PKG_VERSION");

extern crate core;
extern crate sqlparser;

pub mod avro_to_arrow;
pub mod catalog;
pub mod dataframe;
pub mod datasource;
pub mod error;
pub mod execution;
pub mod physical_optimizer;
pub mod physical_plan;
pub mod prelude;
pub mod scalar;
#[cfg(feature = "scheduler")]
pub mod scheduler;
pub mod variable;

// re-export dependencies from arrow-rs to minimise version maintenance for crate users
pub use arrow;
pub use parquet;

// re-export DataFusion crates
pub use datafusion_common as common;
pub use datafusion_common::config;
pub use datafusion_expr as logical_expr;
pub use datafusion_optimizer as optimizer;
pub use datafusion_physical_expr as physical_expr;
pub use datafusion_row as row;
pub use datafusion_sql as sql;

#[cfg(feature = "jit")]
pub use datafusion_jit as jit;

pub use common::from_slice;

#[cfg(test)]
pub mod test;
pub mod test_util;

#[cfg(doctest)]
doc_comment::doctest!("../../../README.md", readme_example_test);

#[cfg(doctest)]
doc_comment::doctest!(
    "../../../docs/source/user-guide/example-usage.md",
    user_guid_example_tests
);