datafusion_expr/udaf.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! [`AggregateUDF`]: User Defined Aggregate Functions
19
20use std::any::Any;
21use std::cmp::Ordering;
22use std::fmt::{self, Debug, Formatter, Write};
23use std::hash::{DefaultHasher, Hash, Hasher};
24use std::sync::Arc;
25use std::vec;
26
27use arrow::datatypes::{DataType, Field, FieldRef};
28
29use datafusion_common::{exec_err, not_impl_err, Result, ScalarValue, Statistics};
30use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
31
32use crate::expr::{
33 schema_name_from_exprs, schema_name_from_exprs_comma_separated_without_space,
34 schema_name_from_sorts, AggregateFunction, AggregateFunctionParams, ExprListDisplay,
35 WindowFunctionParams,
36};
37use crate::function::{
38 AccumulatorArgs, AggregateFunctionSimplification, StateFieldsArgs,
39};
40use crate::groups_accumulator::GroupsAccumulator;
41use crate::utils::format_state_name;
42use crate::utils::AggregateOrderSensitivity;
43use crate::{expr_vec_fmt, Accumulator, Expr};
44use crate::{Documentation, Signature};
45
46/// Logical representation of a user-defined [aggregate function] (UDAF).
47///
48/// An aggregate function combines the values from multiple input rows
49/// into a single output "aggregate" (summary) row. It is different
50/// from a scalar function because it is stateful across batches. User
51/// defined aggregate functions can be used as normal SQL aggregate
52/// functions (`GROUP BY` clause) as well as window functions (`OVER`
53/// clause).
54///
55/// `AggregateUDF` provides DataFusion the information needed to plan and call
56/// aggregate functions, including name, type information, and a factory
57/// function to create an [`Accumulator`] instance, to perform the actual
58/// aggregation.
59///
60/// For more information, please see [the examples]:
61///
62/// 1. For simple use cases, use [`create_udaf`] (examples in [`simple_udaf.rs`]).
63///
64/// 2. For advanced use cases, use [`AggregateUDFImpl`] which provides full API
65/// access (examples in [`advanced_udaf.rs`]).
66///
67/// # API Note
68/// This is a separate struct from `AggregateUDFImpl` to maintain backwards
69/// compatibility with the older API.
70///
71/// [the examples]: https://github.com/apache/datafusion/tree/main/datafusion-examples#single-process
72/// [aggregate function]: https://en.wikipedia.org/wiki/Aggregate_function
73/// [`Accumulator`]: crate::Accumulator
74/// [`create_udaf`]: crate::expr_fn::create_udaf
75/// [`simple_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udaf.rs
76/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
77#[derive(Debug, Clone, PartialOrd)]
78pub struct AggregateUDF {
79 inner: Arc<dyn AggregateUDFImpl>,
80}
81
82impl PartialEq for AggregateUDF {
83 fn eq(&self, other: &Self) -> bool {
84 self.inner.equals(other.inner.as_ref())
85 }
86}
87
88impl Eq for AggregateUDF {}
89
90impl Hash for AggregateUDF {
91 fn hash<H: Hasher>(&self, state: &mut H) {
92 self.inner.hash_value().hash(state)
93 }
94}
95
96impl fmt::Display for AggregateUDF {
97 fn fmt(&self, f: &mut Formatter) -> fmt::Result {
98 write!(f, "{}", self.name())
99 }
100}
101
102/// Arguments passed to [`AggregateUDFImpl::value_from_stats`]
103#[derive(Debug)]
104pub struct StatisticsArgs<'a> {
105 /// The statistics of the aggregate input
106 pub statistics: &'a Statistics,
107 /// The resolved return type of the aggregate function
108 pub return_type: &'a DataType,
109 /// Whether the aggregate function is distinct.
110 ///
111 /// ```sql
112 /// SELECT COUNT(DISTINCT column1) FROM t;
113 /// ```
114 pub is_distinct: bool,
115 /// The physical expression of arguments the aggregate function takes.
116 pub exprs: &'a [Arc<dyn PhysicalExpr>],
117}
118
119impl AggregateUDF {
120 /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
121 ///
122 /// Note this is the same as using the `From` impl (`AggregateUDF::from`)
123 pub fn new_from_impl<F>(fun: F) -> AggregateUDF
124 where
125 F: AggregateUDFImpl + 'static,
126 {
127 Self::new_from_shared_impl(Arc::new(fun))
128 }
129
130 /// Create a new `AggregateUDF` from a `[AggregateUDFImpl]` trait object
131 pub fn new_from_shared_impl(fun: Arc<dyn AggregateUDFImpl>) -> AggregateUDF {
132 Self { inner: fun }
133 }
134
135 /// Return the underlying [`AggregateUDFImpl`] trait object for this function
136 pub fn inner(&self) -> &Arc<dyn AggregateUDFImpl> {
137 &self.inner
138 }
139
140 /// Adds additional names that can be used to invoke this function, in
141 /// addition to `name`
142 ///
143 /// If you implement [`AggregateUDFImpl`] directly you should return aliases directly.
144 pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
145 Self::new_from_impl(AliasedAggregateUDFImpl::new(
146 Arc::clone(&self.inner),
147 aliases,
148 ))
149 }
150
151 /// Creates an [`Expr`] that calls the aggregate function.
152 ///
153 /// This utility allows using the UDAF without requiring access to
154 /// the registry, such as with the DataFrame API.
155 pub fn call(&self, args: Vec<Expr>) -> Expr {
156 Expr::AggregateFunction(AggregateFunction::new_udf(
157 Arc::new(self.clone()),
158 args,
159 false,
160 None,
161 None,
162 None,
163 ))
164 }
165
166 /// Returns this function's name
167 ///
168 /// See [`AggregateUDFImpl::name`] for more details.
169 pub fn name(&self) -> &str {
170 self.inner.name()
171 }
172
173 /// See [`AggregateUDFImpl::schema_name`] for more details.
174 pub fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
175 self.inner.schema_name(params)
176 }
177
178 /// Returns a human readable expression.
179 ///
180 /// See [`Expr::human_display`] for details.
181 pub fn human_display(&self, params: &AggregateFunctionParams) -> Result<String> {
182 self.inner.human_display(params)
183 }
184
185 pub fn window_function_schema_name(
186 &self,
187 params: &WindowFunctionParams,
188 ) -> Result<String> {
189 self.inner.window_function_schema_name(params)
190 }
191
192 /// See [`AggregateUDFImpl::display_name`] for more details.
193 pub fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
194 self.inner.display_name(params)
195 }
196
197 pub fn window_function_display_name(
198 &self,
199 params: &WindowFunctionParams,
200 ) -> Result<String> {
201 self.inner.window_function_display_name(params)
202 }
203
204 pub fn is_nullable(&self) -> bool {
205 self.inner.is_nullable()
206 }
207
208 /// Returns the aliases for this function.
209 pub fn aliases(&self) -> &[String] {
210 self.inner.aliases()
211 }
212
213 /// Returns this function's signature (what input types are accepted)
214 ///
215 /// See [`AggregateUDFImpl::signature`] for more details.
216 pub fn signature(&self) -> &Signature {
217 self.inner.signature()
218 }
219
220 /// Return the type of the function given its input types
221 ///
222 /// See [`AggregateUDFImpl::return_type`] for more details.
223 pub fn return_type(&self, args: &[DataType]) -> Result<DataType> {
224 self.inner.return_type(args)
225 }
226
227 /// Return the field of the function given its input fields
228 ///
229 /// See [`AggregateUDFImpl::return_field`] for more details.
230 pub fn return_field(&self, args: &[FieldRef]) -> Result<FieldRef> {
231 self.inner.return_field(args)
232 }
233
234 /// Return an accumulator the given aggregate, given its return datatype
235 pub fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
236 self.inner.accumulator(acc_args)
237 }
238
239 /// Return the fields used to store the intermediate state for this aggregator, given
240 /// the name of the aggregate, value type and ordering fields. See [`AggregateUDFImpl::state_fields`]
241 /// for more details.
242 ///
243 /// This is used to support multi-phase aggregations
244 pub fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
245 self.inner.state_fields(args)
246 }
247
248 /// See [`AggregateUDFImpl::groups_accumulator_supported`] for more details.
249 pub fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
250 self.inner.groups_accumulator_supported(args)
251 }
252
253 /// See [`AggregateUDFImpl::create_groups_accumulator`] for more details.
254 pub fn create_groups_accumulator(
255 &self,
256 args: AccumulatorArgs,
257 ) -> Result<Box<dyn GroupsAccumulator>> {
258 self.inner.create_groups_accumulator(args)
259 }
260
261 pub fn create_sliding_accumulator(
262 &self,
263 args: AccumulatorArgs,
264 ) -> Result<Box<dyn Accumulator>> {
265 self.inner.create_sliding_accumulator(args)
266 }
267
268 pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
269 self.inner.coerce_types(arg_types)
270 }
271
272 /// See [`AggregateUDFImpl::with_beneficial_ordering`] for more details.
273 pub fn with_beneficial_ordering(
274 self,
275 beneficial_ordering: bool,
276 ) -> Result<Option<AggregateUDF>> {
277 self.inner
278 .with_beneficial_ordering(beneficial_ordering)
279 .map(|updated_udf| updated_udf.map(|udf| Self { inner: udf }))
280 }
281
282 /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
283 /// for possible options.
284 pub fn order_sensitivity(&self) -> AggregateOrderSensitivity {
285 self.inner.order_sensitivity()
286 }
287
288 /// Reserves the `AggregateUDF` (e.g. returns the `AggregateUDF` that will
289 /// generate same result with this `AggregateUDF` when iterated in reverse
290 /// order, and `None` if there is no such `AggregateUDF`).
291 pub fn reverse_udf(&self) -> ReversedUDAF {
292 self.inner.reverse_expr()
293 }
294
295 /// Do the function rewrite
296 ///
297 /// See [`AggregateUDFImpl::simplify`] for more details.
298 pub fn simplify(&self) -> Option<AggregateFunctionSimplification> {
299 self.inner.simplify()
300 }
301
302 /// Returns true if the function is max, false if the function is min
303 /// None in all other cases, used in certain optimizations for
304 /// or aggregate
305 pub fn is_descending(&self) -> Option<bool> {
306 self.inner.is_descending()
307 }
308
309 /// Return the value of this aggregate function if it can be determined
310 /// entirely from statistics and arguments.
311 ///
312 /// See [`AggregateUDFImpl::value_from_stats`] for more details.
313 pub fn value_from_stats(
314 &self,
315 statistics_args: &StatisticsArgs,
316 ) -> Option<ScalarValue> {
317 self.inner.value_from_stats(statistics_args)
318 }
319
320 /// See [`AggregateUDFImpl::default_value`] for more details.
321 pub fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
322 self.inner.default_value(data_type)
323 }
324
325 /// See [`AggregateUDFImpl::supports_null_handling_clause`] for more details.
326 pub fn supports_null_handling_clause(&self) -> bool {
327 self.inner.supports_null_handling_clause()
328 }
329
330 /// See [`AggregateUDFImpl::is_ordered_set_aggregate`] for more details.
331 pub fn is_ordered_set_aggregate(&self) -> bool {
332 self.inner.is_ordered_set_aggregate()
333 }
334
335 /// Returns the documentation for this Aggregate UDF.
336 ///
337 /// Documentation can be accessed programmatically as well as
338 /// generating publicly facing documentation.
339 pub fn documentation(&self) -> Option<&Documentation> {
340 self.inner.documentation()
341 }
342}
343
344impl<F> From<F> for AggregateUDF
345where
346 F: AggregateUDFImpl + Send + Sync + 'static,
347{
348 fn from(fun: F) -> Self {
349 Self::new_from_impl(fun)
350 }
351}
352
353/// Trait for implementing [`AggregateUDF`].
354///
355/// This trait exposes the full API for implementing user defined aggregate functions and
356/// can be used to implement any function.
357///
358/// See [`advanced_udaf.rs`] for a full example with complete implementation and
359/// [`AggregateUDF`] for other available options.
360///
361/// [`advanced_udaf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udaf.rs
362///
363/// # Basic Example
364/// ```
365/// # use std::any::Any;
366/// # use std::sync::{Arc, LazyLock};
367/// # use arrow::datatypes::{DataType, FieldRef};
368/// # use datafusion_common::{DataFusionError, plan_err, Result};
369/// # use datafusion_expr::{col, ColumnarValue, Signature, Volatility, Expr, Documentation};
370/// # use datafusion_expr::{AggregateUDFImpl, AggregateUDF, Accumulator, function::{AccumulatorArgs, StateFieldsArgs}};
371/// # use datafusion_expr::window_doc_sections::DOC_SECTION_AGGREGATE;
372/// # use arrow::datatypes::Schema;
373/// # use arrow::datatypes::Field;
374///
375/// #[derive(Debug, Clone)]
376/// struct GeoMeanUdf {
377/// signature: Signature,
378/// }
379///
380/// impl GeoMeanUdf {
381/// fn new() -> Self {
382/// Self {
383/// signature: Signature::uniform(1, vec![DataType::Float64], Volatility::Immutable),
384/// }
385/// }
386/// }
387///
388/// static DOCUMENTATION: LazyLock<Documentation> = LazyLock::new(|| {
389/// Documentation::builder(DOC_SECTION_AGGREGATE, "calculates a geometric mean", "geo_mean(2.0)")
390/// .with_argument("arg1", "The Float64 number for the geometric mean")
391/// .build()
392/// });
393///
394/// fn get_doc() -> &'static Documentation {
395/// &DOCUMENTATION
396/// }
397///
398/// /// Implement the AggregateUDFImpl trait for GeoMeanUdf
399/// impl AggregateUDFImpl for GeoMeanUdf {
400/// fn as_any(&self) -> &dyn Any { self }
401/// fn name(&self) -> &str { "geo_mean" }
402/// fn signature(&self) -> &Signature { &self.signature }
403/// fn return_type(&self, args: &[DataType]) -> Result<DataType> {
404/// if !matches!(args.get(0), Some(&DataType::Float64)) {
405/// return plan_err!("geo_mean only accepts Float64 arguments");
406/// }
407/// Ok(DataType::Float64)
408/// }
409/// // This is the accumulator factory; DataFusion uses it to create new accumulators.
410/// fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { unimplemented!() }
411/// fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
412/// Ok(vec![
413/// Arc::new(args.return_field.as_ref().clone().with_name("value")),
414/// Arc::new(Field::new("ordering", DataType::UInt32, true))
415/// ])
416/// }
417/// fn documentation(&self) -> Option<&Documentation> {
418/// Some(get_doc())
419/// }
420/// }
421///
422/// // Create a new AggregateUDF from the implementation
423/// let geometric_mean = AggregateUDF::from(GeoMeanUdf::new());
424///
425/// // Call the function `geo_mean(col)`
426/// let expr = geometric_mean.call(vec![col("a")]);
427/// ```
428pub trait AggregateUDFImpl: Debug + Send + Sync {
429 // Note: When adding any methods (with default implementations), remember to add them also
430 // into the AliasedAggregateUDFImpl below!
431
432 /// Returns this object as an [`Any`] trait object
433 fn as_any(&self) -> &dyn Any;
434
435 /// Returns this function's name
436 fn name(&self) -> &str;
437
438 /// Returns the name of the column this expression would create
439 ///
440 /// See [`Expr::schema_name`] for details
441 ///
442 /// Example of schema_name: count(DISTINCT column1) FILTER (WHERE column2 > 10) ORDER BY [..]
443 fn schema_name(&self, params: &AggregateFunctionParams) -> Result<String> {
444 let AggregateFunctionParams {
445 args,
446 distinct,
447 filter,
448 order_by,
449 null_treatment,
450 } = params;
451
452 // exclude the first function argument(= column) in ordered set aggregate function,
453 // because it is duplicated with the WITHIN GROUP clause in schema name.
454 let args = if self.is_ordered_set_aggregate() {
455 &args[1..]
456 } else {
457 &args[..]
458 };
459
460 let mut schema_name = String::new();
461
462 schema_name.write_fmt(format_args!(
463 "{}({}{})",
464 self.name(),
465 if *distinct { "DISTINCT " } else { "" },
466 schema_name_from_exprs_comma_separated_without_space(args)?
467 ))?;
468
469 if let Some(null_treatment) = null_treatment {
470 schema_name.write_fmt(format_args!(" {null_treatment}"))?;
471 }
472
473 if let Some(filter) = filter {
474 schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
475 };
476
477 if let Some(order_by) = order_by {
478 let clause = match self.is_ordered_set_aggregate() {
479 true => "WITHIN GROUP",
480 false => "ORDER BY",
481 };
482
483 schema_name.write_fmt(format_args!(
484 " {} [{}]",
485 clause,
486 schema_name_from_sorts(order_by)?
487 ))?;
488 };
489
490 Ok(schema_name)
491 }
492
493 /// Returns a human readable expression.
494 ///
495 /// See [`Expr::human_display`] for details.
496 fn human_display(&self, params: &AggregateFunctionParams) -> Result<String> {
497 let AggregateFunctionParams {
498 args,
499 distinct,
500 filter,
501 order_by,
502 null_treatment,
503 } = params;
504
505 let mut schema_name = String::new();
506
507 schema_name.write_fmt(format_args!(
508 "{}({}{})",
509 self.name(),
510 if *distinct { "DISTINCT " } else { "" },
511 ExprListDisplay::comma_separated(args.as_slice())
512 ))?;
513
514 if let Some(null_treatment) = null_treatment {
515 schema_name.write_fmt(format_args!(" {null_treatment}"))?;
516 }
517
518 if let Some(filter) = filter {
519 schema_name.write_fmt(format_args!(" FILTER (WHERE {filter})"))?;
520 };
521
522 if let Some(order_by) = order_by {
523 schema_name.write_fmt(format_args!(
524 " ORDER BY [{}]",
525 schema_name_from_sorts(order_by)?
526 ))?;
527 };
528
529 Ok(schema_name)
530 }
531
532 /// Returns the name of the column this expression would create
533 ///
534 /// See [`Expr::schema_name`] for details
535 ///
536 /// Different from `schema_name` in that it is used for window aggregate function
537 ///
538 /// Example of schema_name: count(DISTINCT column1) FILTER (WHERE column2 > 10) [PARTITION BY [..]] [ORDER BY [..]]
539 fn window_function_schema_name(
540 &self,
541 params: &WindowFunctionParams,
542 ) -> Result<String> {
543 let WindowFunctionParams {
544 args,
545 partition_by,
546 order_by,
547 window_frame,
548 null_treatment,
549 } = params;
550
551 let mut schema_name = String::new();
552 schema_name.write_fmt(format_args!(
553 "{}({})",
554 self.name(),
555 schema_name_from_exprs(args)?
556 ))?;
557
558 if let Some(null_treatment) = null_treatment {
559 schema_name.write_fmt(format_args!(" {null_treatment}"))?;
560 }
561
562 if !partition_by.is_empty() {
563 schema_name.write_fmt(format_args!(
564 " PARTITION BY [{}]",
565 schema_name_from_exprs(partition_by)?
566 ))?;
567 }
568
569 if !order_by.is_empty() {
570 schema_name.write_fmt(format_args!(
571 " ORDER BY [{}]",
572 schema_name_from_sorts(order_by)?
573 ))?;
574 };
575
576 schema_name.write_fmt(format_args!(" {window_frame}"))?;
577
578 Ok(schema_name)
579 }
580
581 /// Returns the user-defined display name of function, given the arguments
582 ///
583 /// This can be used to customize the output column name generated by this
584 /// function.
585 ///
586 /// Defaults to `function_name([DISTINCT] column1, column2, ..) [null_treatment] [filter] [order_by [..]]`
587 fn display_name(&self, params: &AggregateFunctionParams) -> Result<String> {
588 let AggregateFunctionParams {
589 args,
590 distinct,
591 filter,
592 order_by,
593 null_treatment,
594 } = params;
595
596 let mut display_name = String::new();
597
598 display_name.write_fmt(format_args!(
599 "{}({}{})",
600 self.name(),
601 if *distinct { "DISTINCT " } else { "" },
602 expr_vec_fmt!(args)
603 ))?;
604
605 if let Some(nt) = null_treatment {
606 display_name.write_fmt(format_args!(" {nt}"))?;
607 }
608 if let Some(fe) = filter {
609 display_name.write_fmt(format_args!(" FILTER (WHERE {fe})"))?;
610 }
611 if let Some(ob) = order_by {
612 display_name.write_fmt(format_args!(
613 " ORDER BY [{}]",
614 ob.iter()
615 .map(|o| format!("{o}"))
616 .collect::<Vec<String>>()
617 .join(", ")
618 ))?;
619 }
620
621 Ok(display_name)
622 }
623
624 /// Returns the user-defined display name of function, given the arguments
625 ///
626 /// This can be used to customize the output column name generated by this
627 /// function.
628 ///
629 /// Different from `display_name` in that it is used for window aggregate function
630 ///
631 /// Defaults to `function_name([DISTINCT] column1, column2, ..) [null_treatment] [partition by [..]] [order_by [..]]`
632 fn window_function_display_name(
633 &self,
634 params: &WindowFunctionParams,
635 ) -> Result<String> {
636 let WindowFunctionParams {
637 args,
638 partition_by,
639 order_by,
640 window_frame,
641 null_treatment,
642 } = params;
643
644 let mut display_name = String::new();
645
646 display_name.write_fmt(format_args!(
647 "{}({})",
648 self.name(),
649 expr_vec_fmt!(args)
650 ))?;
651
652 if let Some(null_treatment) = null_treatment {
653 display_name.write_fmt(format_args!(" {null_treatment}"))?;
654 }
655
656 if !partition_by.is_empty() {
657 display_name.write_fmt(format_args!(
658 " PARTITION BY [{}]",
659 expr_vec_fmt!(partition_by)
660 ))?;
661 }
662
663 if !order_by.is_empty() {
664 display_name
665 .write_fmt(format_args!(" ORDER BY [{}]", expr_vec_fmt!(order_by)))?;
666 };
667
668 display_name.write_fmt(format_args!(
669 " {} BETWEEN {} AND {}",
670 window_frame.units, window_frame.start_bound, window_frame.end_bound
671 ))?;
672
673 Ok(display_name)
674 }
675
676 /// Returns the function's [`Signature`] for information about what input
677 /// types are accepted and the function's Volatility.
678 fn signature(&self) -> &Signature;
679
680 /// What [`DataType`] will be returned by this function, given the types of
681 /// the arguments
682 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;
683
684 /// What type will be returned by this function, given the arguments?
685 ///
686 /// By default, this function calls [`Self::return_type`] with the
687 /// types of each argument.
688 ///
689 /// # Notes
690 ///
691 /// Most UDFs should implement [`Self::return_type`] and not this
692 /// function as the output type for most functions only depends on the types
693 /// of their inputs (e.g. `sum(f64)` is always `f64`).
694 ///
695 /// This function can be used for more advanced cases such as:
696 ///
697 /// 1. specifying nullability
698 /// 2. return types based on the **values** of the arguments (rather than
699 /// their **types**.
700 /// 3. return types based on metadata within the fields of the inputs
701 fn return_field(&self, arg_fields: &[FieldRef]) -> Result<FieldRef> {
702 let arg_types: Vec<_> =
703 arg_fields.iter().map(|f| f.data_type()).cloned().collect();
704 let data_type = self.return_type(&arg_types)?;
705
706 Ok(Arc::new(Field::new(
707 self.name(),
708 data_type,
709 self.is_nullable(),
710 )))
711 }
712
713 /// Whether the aggregate function is nullable.
714 ///
715 /// Nullable means that the function could return `null` for any inputs.
716 /// For example, aggregate functions like `COUNT` always return a non null value
717 /// but others like `MIN` will return `NULL` if there is nullable input.
718 /// Note that if the function is declared as *not* nullable, make sure the [`AggregateUDFImpl::default_value`] is `non-null`
719 fn is_nullable(&self) -> bool {
720 true
721 }
722
723 /// Return a new [`Accumulator`] that aggregates values for a specific
724 /// group during query execution.
725 ///
726 /// acc_args: [`AccumulatorArgs`] contains information about how the
727 /// aggregate function was called.
728 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>>;
729
730 /// Return the fields used to store the intermediate state of this accumulator.
731 ///
732 /// See [`Accumulator::state`] for background information.
733 ///
734 /// args: [`StateFieldsArgs`] contains arguments passed to the
735 /// aggregate function's accumulator.
736 ///
737 /// # Notes:
738 ///
739 /// The default implementation returns a single state field named `name`
740 /// with the same type as `value_type`. This is suitable for aggregates such
741 /// as `SUM` or `MIN` where partial state can be combined by applying the
742 /// same aggregate.
743 ///
744 /// For aggregates such as `AVG` where the partial state is more complex
745 /// (e.g. a COUNT and a SUM), this method is used to define the additional
746 /// fields.
747 ///
748 /// The name of the fields must be unique within the query and thus should
749 /// be derived from `name`. See [`format_state_name`] for a utility function
750 /// to generate a unique name.
751 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
752 let fields = vec![args
753 .return_field
754 .as_ref()
755 .clone()
756 .with_name(format_state_name(args.name, "value"))];
757
758 Ok(fields
759 .into_iter()
760 .map(Arc::new)
761 .chain(args.ordering_fields.to_vec())
762 .collect())
763 }
764
765 /// If the aggregate expression has a specialized
766 /// [`GroupsAccumulator`] implementation. If this returns true,
767 /// `[Self::create_groups_accumulator]` will be called.
768 ///
769 /// # Notes
770 ///
771 /// Even if this function returns true, DataFusion will still use
772 /// [`Self::accumulator`] for certain queries, such as when this aggregate is
773 /// used as a window function or when there no GROUP BY columns in the
774 /// query.
775 fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
776 false
777 }
778
779 /// Return a specialized [`GroupsAccumulator`] that manages state
780 /// for all groups.
781 ///
782 /// For maximum performance, a [`GroupsAccumulator`] should be
783 /// implemented in addition to [`Accumulator`].
784 fn create_groups_accumulator(
785 &self,
786 _args: AccumulatorArgs,
787 ) -> Result<Box<dyn GroupsAccumulator>> {
788 not_impl_err!("GroupsAccumulator hasn't been implemented for {self:?} yet")
789 }
790
791 /// Returns any aliases (alternate names) for this function.
792 ///
793 /// Note: `aliases` should only include names other than [`Self::name`].
794 /// Defaults to `[]` (no aliases)
795 fn aliases(&self) -> &[String] {
796 &[]
797 }
798
799 /// Sliding accumulator is an alternative accumulator that can be used for
800 /// window functions. It has retract method to revert the previous update.
801 ///
802 /// See [retract_batch] for more details.
803 ///
804 /// [retract_batch]: datafusion_expr_common::accumulator::Accumulator::retract_batch
805 fn create_sliding_accumulator(
806 &self,
807 args: AccumulatorArgs,
808 ) -> Result<Box<dyn Accumulator>> {
809 self.accumulator(args)
810 }
811
812 /// Sets the indicator whether ordering requirements of the AggregateUDFImpl is
813 /// satisfied by its input. If this is not the case, UDFs with order
814 /// sensitivity `AggregateOrderSensitivity::Beneficial` can still produce
815 /// the correct result with possibly more work internally.
816 ///
817 /// # Returns
818 ///
819 /// Returns `Ok(Some(updated_udf))` if the process completes successfully.
820 /// If the expression can benefit from existing input ordering, but does
821 /// not implement the method, returns an error. Order insensitive and hard
822 /// requirement aggregators return `Ok(None)`.
823 fn with_beneficial_ordering(
824 self: Arc<Self>,
825 _beneficial_ordering: bool,
826 ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
827 if self.order_sensitivity().is_beneficial() {
828 return exec_err!(
829 "Should implement with satisfied for aggregator :{:?}",
830 self.name()
831 );
832 }
833 Ok(None)
834 }
835
836 /// Gets the order sensitivity of the UDF. See [`AggregateOrderSensitivity`]
837 /// for possible options.
838 fn order_sensitivity(&self) -> AggregateOrderSensitivity {
839 // We have hard ordering requirements by default, meaning that order
840 // sensitive UDFs need their input orderings to satisfy their ordering
841 // requirements to generate correct results.
842 AggregateOrderSensitivity::HardRequirement
843 }
844
845 /// Optionally apply per-UDaF simplification / rewrite rules.
846 ///
847 /// This can be used to apply function specific simplification rules during
848 /// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
849 /// implementation does nothing.
850 ///
851 /// Note that DataFusion handles simplifying arguments and "constant
852 /// folding" (replacing a function call with constant arguments such as
853 /// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
854 /// optimizations manually for specific UDFs.
855 ///
856 /// # Returns
857 ///
858 /// [None] if simplify is not defined or,
859 ///
860 /// Or, a closure with two arguments:
861 /// * 'aggregate_function': [crate::expr::AggregateFunction] for which simplified has been invoked
862 /// * 'info': [crate::simplify::SimplifyInfo]
863 ///
864 /// closure returns simplified [Expr] or an error.
865 ///
866 fn simplify(&self) -> Option<AggregateFunctionSimplification> {
867 None
868 }
869
870 /// Returns the reverse expression of the aggregate function.
871 fn reverse_expr(&self) -> ReversedUDAF {
872 ReversedUDAF::NotSupported
873 }
874
875 /// Coerce arguments of a function call to types that the function can evaluate.
876 ///
877 /// This function is only called if [`AggregateUDFImpl::signature`] returns [`crate::TypeSignature::UserDefined`]. Most
878 /// UDAFs should return one of the other variants of `TypeSignature` which handle common
879 /// cases
880 ///
881 /// See the [type coercion module](crate::type_coercion)
882 /// documentation for more details on type coercion
883 ///
884 /// For example, if your function requires a floating point arguments, but the user calls
885 /// it like `my_func(1::int)` (aka with `1` as an integer), coerce_types could return `[DataType::Float64]`
886 /// to ensure the argument was cast to `1::double`
887 ///
888 /// # Parameters
889 /// * `arg_types`: The argument types of the arguments this function with
890 ///
891 /// # Return value
892 /// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
893 /// arguments to these specific types.
894 fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
895 not_impl_err!("Function {} does not implement coerce_types", self.name())
896 }
897
898 /// Return true if this aggregate UDF is equal to the other.
899 ///
900 /// Allows customizing the equality of aggregate UDFs.
901 /// Must be consistent with [`Self::hash_value`] and follow the same rules as [`Eq`]:
902 ///
903 /// - reflexive: `a.equals(a)`;
904 /// - symmetric: `a.equals(b)` implies `b.equals(a)`;
905 /// - transitive: `a.equals(b)` and `b.equals(c)` implies `a.equals(c)`.
906 ///
907 /// By default, compares [`Self::name`] and [`Self::signature`].
908 fn equals(&self, other: &dyn AggregateUDFImpl) -> bool {
909 self.name() == other.name() && self.signature() == other.signature()
910 }
911
912 /// Returns a hash value for this aggregate UDF.
913 ///
914 /// Allows customizing the hash code of aggregate UDFs. Similarly to [`Hash`] and [`Eq`],
915 /// if [`Self::equals`] returns true for two UDFs, their `hash_value`s must be the same.
916 ///
917 /// By default, hashes [`Self::name`] and [`Self::signature`].
918 fn hash_value(&self) -> u64 {
919 let hasher = &mut DefaultHasher::new();
920 self.name().hash(hasher);
921 self.signature().hash(hasher);
922 hasher.finish()
923 }
924
925 /// If this function is max, return true
926 /// If the function is min, return false
927 /// Otherwise return None (the default)
928 ///
929 ///
930 /// Note: this is used to use special aggregate implementations in certain conditions
931 fn is_descending(&self) -> Option<bool> {
932 None
933 }
934
935 /// Return the value of this aggregate function if it can be determined
936 /// entirely from statistics and arguments.
937 ///
938 /// Using a [`ScalarValue`] rather than a runtime computation can significantly
939 /// improving query performance.
940 ///
941 /// For example, if the minimum value of column `x` is known to be `42` from
942 /// statistics, then the aggregate `MIN(x)` should return `Some(ScalarValue(42))`
943 fn value_from_stats(&self, _statistics_args: &StatisticsArgs) -> Option<ScalarValue> {
944 None
945 }
946
947 /// Returns default value of the function given the input is all `null`.
948 ///
949 /// Most of the aggregate function return Null if input is Null,
950 /// while `count` returns 0 if input is Null
951 fn default_value(&self, data_type: &DataType) -> Result<ScalarValue> {
952 ScalarValue::try_from(data_type)
953 }
954
955 /// If this function supports `[IGNORE NULLS | RESPECT NULLS]` clause, return true
956 /// If the function does not, return false
957 fn supports_null_handling_clause(&self) -> bool {
958 true
959 }
960
961 /// If this function is ordered-set aggregate function, return true
962 /// If the function is not, return false
963 fn is_ordered_set_aggregate(&self) -> bool {
964 false
965 }
966
967 /// Returns the documentation for this Aggregate UDF.
968 ///
969 /// Documentation can be accessed programmatically as well as
970 /// generating publicly facing documentation.
971 fn documentation(&self) -> Option<&Documentation> {
972 None
973 }
974
975 /// Indicates whether the aggregation function is monotonic as a set
976 /// function. See [`SetMonotonicity`] for details.
977 fn set_monotonicity(&self, _data_type: &DataType) -> SetMonotonicity {
978 SetMonotonicity::NotMonotonic
979 }
980}
981
982impl PartialEq for dyn AggregateUDFImpl {
983 fn eq(&self, other: &Self) -> bool {
984 self.equals(other)
985 }
986}
987
988// Manual implementation of `PartialOrd`
989// There might be some wackiness with it, but this is based on the impl of eq for AggregateUDFImpl
990// https://users.rust-lang.org/t/how-to-compare-two-trait-objects-for-equality/88063/5
991impl PartialOrd for dyn AggregateUDFImpl {
992 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
993 match self.name().partial_cmp(other.name()) {
994 Some(Ordering::Equal) => self.signature().partial_cmp(other.signature()),
995 cmp => cmp,
996 }
997 }
998}
999
1000pub enum ReversedUDAF {
1001 /// The expression is the same as the original expression, like SUM, COUNT
1002 Identical,
1003 /// The expression does not support reverse calculation
1004 NotSupported,
1005 /// The expression is different from the original expression
1006 Reversed(Arc<AggregateUDF>),
1007}
1008
1009/// AggregateUDF that adds an alias to the underlying function. It is better to
1010/// implement [`AggregateUDFImpl`], which supports aliases, directly if possible.
1011#[derive(Debug)]
1012struct AliasedAggregateUDFImpl {
1013 inner: Arc<dyn AggregateUDFImpl>,
1014 aliases: Vec<String>,
1015}
1016
1017impl AliasedAggregateUDFImpl {
1018 pub fn new(
1019 inner: Arc<dyn AggregateUDFImpl>,
1020 new_aliases: impl IntoIterator<Item = &'static str>,
1021 ) -> Self {
1022 let mut aliases = inner.aliases().to_vec();
1023 aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));
1024
1025 Self { inner, aliases }
1026 }
1027}
1028
1029impl AggregateUDFImpl for AliasedAggregateUDFImpl {
1030 fn as_any(&self) -> &dyn Any {
1031 self
1032 }
1033
1034 fn name(&self) -> &str {
1035 self.inner.name()
1036 }
1037
1038 fn signature(&self) -> &Signature {
1039 self.inner.signature()
1040 }
1041
1042 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
1043 self.inner.return_type(arg_types)
1044 }
1045
1046 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
1047 self.inner.accumulator(acc_args)
1048 }
1049
1050 fn aliases(&self) -> &[String] {
1051 &self.aliases
1052 }
1053
1054 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1055 self.inner.state_fields(args)
1056 }
1057
1058 fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
1059 self.inner.groups_accumulator_supported(args)
1060 }
1061
1062 fn create_groups_accumulator(
1063 &self,
1064 args: AccumulatorArgs,
1065 ) -> Result<Box<dyn GroupsAccumulator>> {
1066 self.inner.create_groups_accumulator(args)
1067 }
1068
1069 fn create_sliding_accumulator(
1070 &self,
1071 args: AccumulatorArgs,
1072 ) -> Result<Box<dyn Accumulator>> {
1073 self.inner.accumulator(args)
1074 }
1075
1076 fn with_beneficial_ordering(
1077 self: Arc<Self>,
1078 beneficial_ordering: bool,
1079 ) -> Result<Option<Arc<dyn AggregateUDFImpl>>> {
1080 Arc::clone(&self.inner)
1081 .with_beneficial_ordering(beneficial_ordering)
1082 .map(|udf| {
1083 udf.map(|udf| {
1084 Arc::new(AliasedAggregateUDFImpl {
1085 inner: udf,
1086 aliases: self.aliases.clone(),
1087 }) as Arc<dyn AggregateUDFImpl>
1088 })
1089 })
1090 }
1091
1092 fn order_sensitivity(&self) -> AggregateOrderSensitivity {
1093 self.inner.order_sensitivity()
1094 }
1095
1096 fn simplify(&self) -> Option<AggregateFunctionSimplification> {
1097 self.inner.simplify()
1098 }
1099
1100 fn reverse_expr(&self) -> ReversedUDAF {
1101 self.inner.reverse_expr()
1102 }
1103
1104 fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
1105 self.inner.coerce_types(arg_types)
1106 }
1107
1108 fn equals(&self, other: &dyn AggregateUDFImpl) -> bool {
1109 if let Some(other) = other.as_any().downcast_ref::<AliasedAggregateUDFImpl>() {
1110 self.inner.equals(other.inner.as_ref()) && self.aliases == other.aliases
1111 } else {
1112 false
1113 }
1114 }
1115
1116 fn hash_value(&self) -> u64 {
1117 let hasher = &mut DefaultHasher::new();
1118 self.inner.hash_value().hash(hasher);
1119 self.aliases.hash(hasher);
1120 hasher.finish()
1121 }
1122
1123 fn is_descending(&self) -> Option<bool> {
1124 self.inner.is_descending()
1125 }
1126
1127 fn documentation(&self) -> Option<&Documentation> {
1128 self.inner.documentation()
1129 }
1130}
1131
1132// Aggregate UDF doc sections for use in public documentation
1133pub mod aggregate_doc_sections {
1134 use crate::DocSection;
1135
1136 pub fn doc_sections() -> Vec<DocSection> {
1137 vec![
1138 DOC_SECTION_GENERAL,
1139 DOC_SECTION_STATISTICAL,
1140 DOC_SECTION_APPROXIMATE,
1141 ]
1142 }
1143
1144 pub const DOC_SECTION_GENERAL: DocSection = DocSection {
1145 include: true,
1146 label: "General Functions",
1147 description: None,
1148 };
1149
1150 pub const DOC_SECTION_STATISTICAL: DocSection = DocSection {
1151 include: true,
1152 label: "Statistical Functions",
1153 description: None,
1154 };
1155
1156 pub const DOC_SECTION_APPROXIMATE: DocSection = DocSection {
1157 include: true,
1158 label: "Approximate Functions",
1159 description: None,
1160 };
1161}
1162
1163/// Indicates whether an aggregation function is monotonic as a set
1164/// function. A set function is monotonically increasing if its value
1165/// increases as its argument grows (as a set). Formally, `f` is a
1166/// monotonically increasing set function if `f(S) >= f(T)` whenever `S`
1167/// is a superset of `T`.
1168///
1169/// For example `COUNT` and `MAX` are monotonically increasing as their
1170/// values always increase (or stay the same) as new values are seen. On
1171/// the other hand, `MIN` is monotonically decreasing as its value always
1172/// decreases or stays the same as new values are seen.
1173#[derive(Debug, Clone, PartialEq)]
1174pub enum SetMonotonicity {
1175 /// Aggregate value increases or stays the same as the input set grows.
1176 Increasing,
1177 /// Aggregate value decreases or stays the same as the input set grows.
1178 Decreasing,
1179 /// Aggregate value may increase, decrease, or stay the same as the input
1180 /// set grows.
1181 NotMonotonic,
1182}
1183
1184#[cfg(test)]
1185mod test {
1186 use crate::{AggregateUDF, AggregateUDFImpl};
1187 use arrow::datatypes::{DataType, FieldRef};
1188 use datafusion_common::Result;
1189 use datafusion_expr_common::accumulator::Accumulator;
1190 use datafusion_expr_common::signature::{Signature, Volatility};
1191 use datafusion_functions_aggregate_common::accumulator::{
1192 AccumulatorArgs, StateFieldsArgs,
1193 };
1194 use std::any::Any;
1195 use std::cmp::Ordering;
1196
1197 #[derive(Debug, Clone)]
1198 struct AMeanUdf {
1199 signature: Signature,
1200 }
1201
1202 impl AMeanUdf {
1203 fn new() -> Self {
1204 Self {
1205 signature: Signature::uniform(
1206 1,
1207 vec![DataType::Float64],
1208 Volatility::Immutable,
1209 ),
1210 }
1211 }
1212 }
1213
1214 impl AggregateUDFImpl for AMeanUdf {
1215 fn as_any(&self) -> &dyn Any {
1216 self
1217 }
1218 fn name(&self) -> &str {
1219 "a"
1220 }
1221 fn signature(&self) -> &Signature {
1222 &self.signature
1223 }
1224 fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
1225 unimplemented!()
1226 }
1227 fn accumulator(
1228 &self,
1229 _acc_args: AccumulatorArgs,
1230 ) -> Result<Box<dyn Accumulator>> {
1231 unimplemented!()
1232 }
1233 fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1234 unimplemented!()
1235 }
1236 }
1237
1238 #[derive(Debug, Clone)]
1239 struct BMeanUdf {
1240 signature: Signature,
1241 }
1242 impl BMeanUdf {
1243 fn new() -> Self {
1244 Self {
1245 signature: Signature::uniform(
1246 1,
1247 vec![DataType::Float64],
1248 Volatility::Immutable,
1249 ),
1250 }
1251 }
1252 }
1253
1254 impl AggregateUDFImpl for BMeanUdf {
1255 fn as_any(&self) -> &dyn Any {
1256 self
1257 }
1258 fn name(&self) -> &str {
1259 "b"
1260 }
1261 fn signature(&self) -> &Signature {
1262 &self.signature
1263 }
1264 fn return_type(&self, _args: &[DataType]) -> Result<DataType> {
1265 unimplemented!()
1266 }
1267 fn accumulator(
1268 &self,
1269 _acc_args: AccumulatorArgs,
1270 ) -> Result<Box<dyn Accumulator>> {
1271 unimplemented!()
1272 }
1273 fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
1274 unimplemented!()
1275 }
1276 }
1277
1278 #[test]
1279 fn test_partial_ord() {
1280 // Test validates that partial ord is defined for AggregateUDF using the name and signature,
1281 // not intended to exhaustively test all possibilities
1282 let a1 = AggregateUDF::from(AMeanUdf::new());
1283 let a2 = AggregateUDF::from(AMeanUdf::new());
1284 assert_eq!(a1.partial_cmp(&a2), Some(Ordering::Equal));
1285
1286 let b1 = AggregateUDF::from(BMeanUdf::new());
1287 assert!(a1 < b1);
1288 assert!(!(a1 == b1));
1289 }
1290}