datafusion_expr/udf.rs
1// Licensed to the Apache Software Foundation (ASF) under one
2// or more contributor license agreements. See the NOTICE file
3// distributed with this work for additional information
4// regarding copyright ownership. The ASF licenses this file
5// to you under the Apache License, Version 2.0 (the
6// "License"); you may not use this file except in compliance
7// with the License. You may obtain a copy of the License at
8//
9// http://www.apache.org/licenses/LICENSE-2.0
10//
11// Unless required by applicable law or agreed to in writing,
12// software distributed under the License is distributed on an
13// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14// KIND, either express or implied. See the License for the
15// specific language governing permissions and limitations
16// under the License.
17
18//! [`ScalarUDF`]: Scalar User Defined Functions
19
20use crate::expr::schema_name_from_exprs_comma_separated_without_space;
21use crate::simplify::{ExprSimplifyResult, SimplifyInfo};
22use crate::sort_properties::{ExprProperties, SortProperties};
23use crate::{ColumnarValue, Documentation, Expr, Signature};
24use arrow::datatypes::{DataType, Field, FieldRef};
25use datafusion_common::{not_impl_err, ExprSchema, Result, ScalarValue};
26use datafusion_expr_common::interval_arithmetic::Interval;
27use std::any::Any;
28use std::cmp::Ordering;
29use std::fmt::Debug;
30use std::hash::{DefaultHasher, Hash, Hasher};
31use std::sync::Arc;
32
33/// Logical representation of a Scalar User Defined Function.
34///
35/// A scalar function produces a single row output for each row of input. This
36/// struct contains the information DataFusion needs to plan and invoke
37/// functions you supply such as name, type signature, return type, and actual
38/// implementation.
39///
40/// 1. For simple use cases, use [`create_udf`] (examples in [`simple_udf.rs`]).
41///
42/// 2. For advanced use cases, use [`ScalarUDFImpl`] which provides full API
43/// access (examples in [`advanced_udf.rs`]).
44///
45/// See [`Self::call`] to create an `Expr` which invokes a `ScalarUDF` with arguments.
46///
47/// # API Note
48///
49/// This is a separate struct from [`ScalarUDFImpl`] to maintain backwards
50/// compatibility with the older API.
51///
52/// [`create_udf`]: crate::expr_fn::create_udf
53/// [`simple_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/simple_udf.rs
54/// [`advanced_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udf.rs
55#[derive(Debug, Clone)]
56pub struct ScalarUDF {
57 inner: Arc<dyn ScalarUDFImpl>,
58}
59
60impl PartialEq for ScalarUDF {
61 fn eq(&self, other: &Self) -> bool {
62 self.inner.equals(other.inner.as_ref())
63 }
64}
65
66// Manual implementation based on `ScalarUDFImpl::equals`
67impl PartialOrd for ScalarUDF {
68 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
69 match self.name().partial_cmp(other.name()) {
70 Some(Ordering::Equal) => self.signature().partial_cmp(other.signature()),
71 cmp => cmp,
72 }
73 }
74}
75
76impl Eq for ScalarUDF {}
77
78impl Hash for ScalarUDF {
79 fn hash<H: Hasher>(&self, state: &mut H) {
80 self.inner.hash_value().hash(state)
81 }
82}
83
84impl ScalarUDF {
85 /// Create a new `ScalarUDF` from a `[ScalarUDFImpl]` trait object
86 ///
87 /// Note this is the same as using the `From` impl (`ScalarUDF::from`)
88 pub fn new_from_impl<F>(fun: F) -> ScalarUDF
89 where
90 F: ScalarUDFImpl + 'static,
91 {
92 Self::new_from_shared_impl(Arc::new(fun))
93 }
94
95 /// Create a new `ScalarUDF` from a `[ScalarUDFImpl]` trait object
96 pub fn new_from_shared_impl(fun: Arc<dyn ScalarUDFImpl>) -> ScalarUDF {
97 Self { inner: fun }
98 }
99
100 /// Return the underlying [`ScalarUDFImpl`] trait object for this function
101 pub fn inner(&self) -> &Arc<dyn ScalarUDFImpl> {
102 &self.inner
103 }
104
105 /// Adds additional names that can be used to invoke this function, in
106 /// addition to `name`
107 ///
108 /// If you implement [`ScalarUDFImpl`] directly you should return aliases directly.
109 pub fn with_aliases(self, aliases: impl IntoIterator<Item = &'static str>) -> Self {
110 Self::new_from_impl(AliasedScalarUDFImpl::new(Arc::clone(&self.inner), aliases))
111 }
112
113 /// Returns a [`Expr`] logical expression to call this UDF with specified
114 /// arguments.
115 ///
116 /// This utility allows easily calling UDFs
117 ///
118 /// # Example
119 /// ```no_run
120 /// use datafusion_expr::{col, lit, ScalarUDF};
121 /// # fn my_udf() -> ScalarUDF { unimplemented!() }
122 /// let my_func: ScalarUDF = my_udf();
123 /// // Create an expr for `my_func(a, 12.3)`
124 /// let expr = my_func.call(vec![col("a"), lit(12.3)]);
125 /// ```
126 pub fn call(&self, args: Vec<Expr>) -> Expr {
127 Expr::ScalarFunction(crate::expr::ScalarFunction::new_udf(
128 Arc::new(self.clone()),
129 args,
130 ))
131 }
132
133 /// Returns this function's name.
134 ///
135 /// See [`ScalarUDFImpl::name`] for more details.
136 pub fn name(&self) -> &str {
137 self.inner.name()
138 }
139
140 /// Returns this function's display_name.
141 ///
142 /// See [`ScalarUDFImpl::display_name`] for more details
143 pub fn display_name(&self, args: &[Expr]) -> Result<String> {
144 self.inner.display_name(args)
145 }
146
147 /// Returns this function's schema_name.
148 ///
149 /// See [`ScalarUDFImpl::schema_name`] for more details
150 pub fn schema_name(&self, args: &[Expr]) -> Result<String> {
151 self.inner.schema_name(args)
152 }
153
154 /// Returns the aliases for this function.
155 ///
156 /// See [`ScalarUDF::with_aliases`] for more details
157 pub fn aliases(&self) -> &[String] {
158 self.inner.aliases()
159 }
160
161 /// Returns this function's [`Signature`] (what input types are accepted).
162 ///
163 /// See [`ScalarUDFImpl::signature`] for more details.
164 pub fn signature(&self) -> &Signature {
165 self.inner.signature()
166 }
167
168 /// The datatype this function returns given the input argument types.
169 /// This function is used when the input arguments are [`DataType`]s.
170 ///
171 /// # Notes
172 ///
173 /// If a function implement [`ScalarUDFImpl::return_field_from_args`],
174 /// its [`ScalarUDFImpl::return_type`] should raise an error.
175 ///
176 /// See [`ScalarUDFImpl::return_type`] for more details.
177 pub fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
178 self.inner.return_type(arg_types)
179 }
180
181 /// Return the datatype this function returns given the input argument types.
182 ///
183 /// See [`ScalarUDFImpl::return_field_from_args`] for more details.
184 pub fn return_field_from_args(&self, args: ReturnFieldArgs) -> Result<FieldRef> {
185 self.inner.return_field_from_args(args)
186 }
187
188 /// Do the function rewrite
189 ///
190 /// See [`ScalarUDFImpl::simplify`] for more details.
191 pub fn simplify(
192 &self,
193 args: Vec<Expr>,
194 info: &dyn SimplifyInfo,
195 ) -> Result<ExprSimplifyResult> {
196 self.inner.simplify(args, info)
197 }
198
199 #[allow(deprecated)]
200 pub fn is_nullable(&self, args: &[Expr], schema: &dyn ExprSchema) -> bool {
201 self.inner.is_nullable(args, schema)
202 }
203
204 /// Invoke the function on `args`, returning the appropriate result.
205 ///
206 /// See [`ScalarUDFImpl::invoke_with_args`] for details.
207 pub fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
208 self.inner.invoke_with_args(args)
209 }
210
211 /// Get the circuits of inner implementation
212 pub fn short_circuits(&self) -> bool {
213 self.inner.short_circuits()
214 }
215
216 /// Computes the output interval for a [`ScalarUDF`], given the input
217 /// intervals.
218 ///
219 /// # Parameters
220 ///
221 /// * `inputs` are the intervals for the inputs (children) of this function.
222 ///
223 /// # Example
224 ///
225 /// If the function is `ABS(a)`, and the input interval is `a: [-3, 2]`,
226 /// then the output interval would be `[0, 3]`.
227 pub fn evaluate_bounds(&self, inputs: &[&Interval]) -> Result<Interval> {
228 self.inner.evaluate_bounds(inputs)
229 }
230
231 /// Updates bounds for child expressions, given a known interval for this
232 /// function. This is used to propagate constraints down through an expression
233 /// tree.
234 ///
235 /// # Parameters
236 ///
237 /// * `interval` is the currently known interval for this function.
238 /// * `inputs` are the current intervals for the inputs (children) of this function.
239 ///
240 /// # Returns
241 ///
242 /// A `Vec` of new intervals for the children, in order.
243 ///
244 /// If constraint propagation reveals an infeasibility for any child, returns
245 /// [`None`]. If none of the children intervals change as a result of
246 /// propagation, may return an empty vector instead of cloning `children`.
247 /// This is the default (and conservative) return value.
248 ///
249 /// # Example
250 ///
251 /// If the function is `ABS(a)`, the current `interval` is `[4, 5]` and the
252 /// input `a` is given as `[-7, 3]`, then propagation would return `[-5, 3]`.
253 pub fn propagate_constraints(
254 &self,
255 interval: &Interval,
256 inputs: &[&Interval],
257 ) -> Result<Option<Vec<Interval>>> {
258 self.inner.propagate_constraints(interval, inputs)
259 }
260
261 /// Calculates the [`SortProperties`] of this function based on its
262 /// children's properties.
263 pub fn output_ordering(&self, inputs: &[ExprProperties]) -> Result<SortProperties> {
264 self.inner.output_ordering(inputs)
265 }
266
267 pub fn preserves_lex_ordering(&self, inputs: &[ExprProperties]) -> Result<bool> {
268 self.inner.preserves_lex_ordering(inputs)
269 }
270
271 /// See [`ScalarUDFImpl::coerce_types`] for more details.
272 pub fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
273 self.inner.coerce_types(arg_types)
274 }
275
276 /// Returns the documentation for this Scalar UDF.
277 ///
278 /// Documentation can be accessed programmatically as well as
279 /// generating publicly facing documentation.
280 pub fn documentation(&self) -> Option<&Documentation> {
281 self.inner.documentation()
282 }
283}
284
285impl<F> From<F> for ScalarUDF
286where
287 F: ScalarUDFImpl + 'static,
288{
289 fn from(fun: F) -> Self {
290 Self::new_from_impl(fun)
291 }
292}
293
294/// Arguments passed to [`ScalarUDFImpl::invoke_with_args`] when invoking a
295/// scalar function.
296pub struct ScalarFunctionArgs {
297 /// The evaluated arguments to the function
298 pub args: Vec<ColumnarValue>,
299 /// Field associated with each arg, if it exists
300 pub arg_fields: Vec<FieldRef>,
301 /// The number of rows in record batch being evaluated
302 pub number_rows: usize,
303 /// The return field of the scalar function returned (from `return_type`
304 /// or `return_field_from_args`) when creating the physical expression
305 /// from the logical expression
306 pub return_field: FieldRef,
307}
308
309impl ScalarFunctionArgs {
310 /// The return type of the function. See [`Self::return_field`] for more
311 /// details.
312 pub fn return_type(&self) -> &DataType {
313 self.return_field.data_type()
314 }
315}
316
317/// Information about arguments passed to the function
318///
319/// This structure contains metadata about how the function was called
320/// such as the type of the arguments, any scalar arguments and if the
321/// arguments can (ever) be null
322///
323/// See [`ScalarUDFImpl::return_field_from_args`] for more information
324#[derive(Debug)]
325pub struct ReturnFieldArgs<'a> {
326 /// The data types of the arguments to the function
327 pub arg_fields: &'a [FieldRef],
328 /// Is argument `i` to the function a scalar (constant)?
329 ///
330 /// If the argument `i` is not a scalar, it will be None
331 ///
332 /// For example, if a function is called like `my_function(column_a, 5)`
333 /// this field will be `[None, Some(ScalarValue::Int32(Some(5)))]`
334 pub scalar_arguments: &'a [Option<&'a ScalarValue>],
335}
336
337/// Trait for implementing user defined scalar functions.
338///
339/// This trait exposes the full API for implementing user defined functions and
340/// can be used to implement any function.
341///
342/// See [`advanced_udf.rs`] for a full example with complete implementation and
343/// [`ScalarUDF`] for other available options.
344///
345/// [`advanced_udf.rs`]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/advanced_udf.rs
346///
347/// # Basic Example
348/// ```
349/// # use std::any::Any;
350/// # use std::sync::LazyLock;
351/// # use arrow::datatypes::DataType;
352/// # use datafusion_common::{DataFusionError, plan_err, Result};
353/// # use datafusion_expr::{col, ColumnarValue, Documentation, ScalarFunctionArgs, Signature, Volatility};
354/// # use datafusion_expr::{ScalarUDFImpl, ScalarUDF};
355/// # use datafusion_expr::scalar_doc_sections::DOC_SECTION_MATH;
356/// /// This struct for a simple UDF that adds one to an int32
357/// #[derive(Debug)]
358/// struct AddOne {
359/// signature: Signature,
360/// }
361///
362/// impl AddOne {
363/// fn new() -> Self {
364/// Self {
365/// signature: Signature::uniform(1, vec![DataType::Int32], Volatility::Immutable),
366/// }
367/// }
368/// }
369///
370/// static DOCUMENTATION: LazyLock<Documentation> = LazyLock::new(|| {
371/// Documentation::builder(DOC_SECTION_MATH, "Add one to an int32", "add_one(2)")
372/// .with_argument("arg1", "The int32 number to add one to")
373/// .build()
374/// });
375///
376/// fn get_doc() -> &'static Documentation {
377/// &DOCUMENTATION
378/// }
379///
380/// /// Implement the ScalarUDFImpl trait for AddOne
381/// impl ScalarUDFImpl for AddOne {
382/// fn as_any(&self) -> &dyn Any { self }
383/// fn name(&self) -> &str { "add_one" }
384/// fn signature(&self) -> &Signature { &self.signature }
385/// fn return_type(&self, args: &[DataType]) -> Result<DataType> {
386/// if !matches!(args.get(0), Some(&DataType::Int32)) {
387/// return plan_err!("add_one only accepts Int32 arguments");
388/// }
389/// Ok(DataType::Int32)
390/// }
391/// // The actual implementation would add one to the argument
392/// fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
393/// unimplemented!()
394/// }
395/// fn documentation(&self) -> Option<&Documentation> {
396/// Some(get_doc())
397/// }
398/// }
399///
400/// // Create a new ScalarUDF from the implementation
401/// let add_one = ScalarUDF::from(AddOne::new());
402///
403/// // Call the function `add_one(col)`
404/// let expr = add_one.call(vec![col("a")]);
405/// ```
406pub trait ScalarUDFImpl: Debug + Send + Sync {
407 // Note: When adding any methods (with default implementations), remember to add them also
408 // into the AliasedScalarUDFImpl below!
409
410 /// Returns this object as an [`Any`] trait object
411 fn as_any(&self) -> &dyn Any;
412
413 /// Returns this function's name
414 fn name(&self) -> &str;
415
416 /// Returns the user-defined display name of function, given the arguments
417 ///
418 /// This can be used to customize the output column name generated by this
419 /// function.
420 ///
421 /// Defaults to `name(args[0], args[1], ...)`
422 fn display_name(&self, args: &[Expr]) -> Result<String> {
423 let names: Vec<String> = args.iter().map(ToString::to_string).collect();
424 // TODO: join with ", " to standardize the formatting of Vec<Expr>, <https://github.com/apache/datafusion/issues/10364>
425 Ok(format!("{}({})", self.name(), names.join(",")))
426 }
427
428 /// Returns the name of the column this expression would create
429 ///
430 /// See [`Expr::schema_name`] for details
431 fn schema_name(&self, args: &[Expr]) -> Result<String> {
432 Ok(format!(
433 "{}({})",
434 self.name(),
435 schema_name_from_exprs_comma_separated_without_space(args)?
436 ))
437 }
438
439 /// Returns the function's [`Signature`] for information about what input
440 /// types are accepted and the function's Volatility.
441 fn signature(&self) -> &Signature;
442
443 /// What [`DataType`] will be returned by this function, given the types of
444 /// the arguments.
445 ///
446 /// # Notes
447 ///
448 /// If you provide an implementation for [`Self::return_field_from_args`],
449 /// DataFusion will not call `return_type` (this function). In such cases
450 /// is recommended to return [`DataFusionError::Internal`].
451 ///
452 /// [`DataFusionError::Internal`]: datafusion_common::DataFusionError::Internal
453 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType>;
454
455 /// What type will be returned by this function, given the arguments?
456 ///
457 /// By default, this function calls [`Self::return_type`] with the
458 /// types of each argument.
459 ///
460 /// # Notes
461 ///
462 /// For the majority of UDFs, implementing [`Self::return_type`] is sufficient,
463 /// as the result type is typically a deterministic function of the input types
464 /// (e.g., `sqrt(f32)` consistently yields `f32`). Implementing this method directly
465 /// is generally unnecessary unless the return type depends on runtime values.
466 ///
467 /// This function can be used for more advanced cases such as:
468 ///
469 /// 1. specifying nullability
470 /// 2. return types based on the **values** of the arguments (rather than
471 /// their **types**.
472 ///
473 /// # Example creating `Field`
474 ///
475 /// Note the name of the [`Field`] is ignored, except for structured types such as
476 /// `DataType::Struct`.
477 ///
478 /// ```rust
479 /// # use std::sync::Arc;
480 /// # use arrow::datatypes::{DataType, Field, FieldRef};
481 /// # use datafusion_common::Result;
482 /// # use datafusion_expr::ReturnFieldArgs;
483 /// # struct Example{}
484 /// # impl Example {
485 /// fn return_field_from_args(&self, args: ReturnFieldArgs) -> Result<FieldRef> {
486 /// // report output is only nullable if any one of the arguments are nullable
487 /// let nullable = args.arg_fields.iter().any(|f| f.is_nullable());
488 /// let field = Arc::new(Field::new("ignored_name", DataType::Int32, true));
489 /// Ok(field)
490 /// }
491 /// # }
492 /// ```
493 ///
494 /// # Output Type based on Values
495 ///
496 /// For example, the following two function calls get the same argument
497 /// types (something and a `Utf8` string) but return different types based
498 /// on the value of the second argument:
499 ///
500 /// * `arrow_cast(x, 'Int16')` --> `Int16`
501 /// * `arrow_cast(x, 'Float32')` --> `Float32`
502 ///
503 /// # Requirements
504 ///
505 /// This function **must** consistently return the same type for the same
506 /// logical input even if the input is simplified (e.g. it must return the same
507 /// value for `('foo' | 'bar')` as it does for ('foobar').
508 fn return_field_from_args(&self, args: ReturnFieldArgs) -> Result<FieldRef> {
509 let data_types = args
510 .arg_fields
511 .iter()
512 .map(|f| f.data_type())
513 .cloned()
514 .collect::<Vec<_>>();
515 let return_type = self.return_type(&data_types)?;
516 Ok(Arc::new(Field::new(self.name(), return_type, true)))
517 }
518
519 #[deprecated(
520 since = "45.0.0",
521 note = "Use `return_field_from_args` instead. if you use `is_nullable` that returns non-nullable with `return_type`, you would need to switch to `return_field_from_args`, you might have error"
522 )]
523 fn is_nullable(&self, _args: &[Expr], _schema: &dyn ExprSchema) -> bool {
524 true
525 }
526
527 /// Invoke the function returning the appropriate result.
528 ///
529 /// # Performance
530 ///
531 /// For the best performance, the implementations should handle the common case
532 /// when one or more of their arguments are constant values (aka
533 /// [`ColumnarValue::Scalar`]).
534 ///
535 /// [`ColumnarValue::values_to_arrays`] can be used to convert the arguments
536 /// to arrays, which will likely be simpler code, but be slower.
537 fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue>;
538
539 /// Returns any aliases (alternate names) for this function.
540 ///
541 /// Aliases can be used to invoke the same function using different names.
542 /// For example in some databases `now()` and `current_timestamp()` are
543 /// aliases for the same function. This behavior can be obtained by
544 /// returning `current_timestamp` as an alias for the `now` function.
545 ///
546 /// Note: `aliases` should only include names other than [`Self::name`].
547 /// Defaults to `[]` (no aliases)
548 fn aliases(&self) -> &[String] {
549 &[]
550 }
551
552 /// Optionally apply per-UDF simplification / rewrite rules.
553 ///
554 /// This can be used to apply function specific simplification rules during
555 /// optimization (e.g. `arrow_cast` --> `Expr::Cast`). The default
556 /// implementation does nothing.
557 ///
558 /// Note that DataFusion handles simplifying arguments and "constant
559 /// folding" (replacing a function call with constant arguments such as
560 /// `my_add(1,2) --> 3` ). Thus, there is no need to implement such
561 /// optimizations manually for specific UDFs.
562 ///
563 /// # Arguments
564 /// * `args`: The arguments of the function
565 /// * `info`: The necessary information for simplification
566 ///
567 /// # Returns
568 /// [`ExprSimplifyResult`] indicating the result of the simplification NOTE
569 /// if the function cannot be simplified, the arguments *MUST* be returned
570 /// unmodified
571 fn simplify(
572 &self,
573 args: Vec<Expr>,
574 _info: &dyn SimplifyInfo,
575 ) -> Result<ExprSimplifyResult> {
576 Ok(ExprSimplifyResult::Original(args))
577 }
578
579 /// Returns true if some of this `exprs` subexpressions may not be evaluated
580 /// and thus any side effects (like divide by zero) may not be encountered.
581 ///
582 /// Setting this to true prevents certain optimizations such as common
583 /// subexpression elimination
584 fn short_circuits(&self) -> bool {
585 false
586 }
587
588 /// Computes the output [`Interval`] for a [`ScalarUDFImpl`], given the input
589 /// intervals.
590 ///
591 /// # Parameters
592 ///
593 /// * `children` are the intervals for the children (inputs) of this function.
594 ///
595 /// # Example
596 ///
597 /// If the function is `ABS(a)`, and the input interval is `a: [-3, 2]`,
598 /// then the output interval would be `[0, 3]`.
599 fn evaluate_bounds(&self, _input: &[&Interval]) -> Result<Interval> {
600 // We cannot assume the input datatype is the same of output type.
601 Interval::make_unbounded(&DataType::Null)
602 }
603
604 /// Updates bounds for child expressions, given a known [`Interval`]s for this
605 /// function.
606 ///
607 /// This function is used to propagate constraints down through an
608 /// expression tree.
609 ///
610 /// # Parameters
611 ///
612 /// * `interval` is the currently known interval for this function.
613 /// * `inputs` are the current intervals for the inputs (children) of this function.
614 ///
615 /// # Returns
616 ///
617 /// A `Vec` of new intervals for the children, in order.
618 ///
619 /// If constraint propagation reveals an infeasibility for any child, returns
620 /// [`None`]. If none of the children intervals change as a result of
621 /// propagation, may return an empty vector instead of cloning `children`.
622 /// This is the default (and conservative) return value.
623 ///
624 /// # Example
625 ///
626 /// If the function is `ABS(a)`, the current `interval` is `[4, 5]` and the
627 /// input `a` is given as `[-7, 3]`, then propagation would return `[-5, 3]`.
628 fn propagate_constraints(
629 &self,
630 _interval: &Interval,
631 _inputs: &[&Interval],
632 ) -> Result<Option<Vec<Interval>>> {
633 Ok(Some(vec![]))
634 }
635
636 /// Calculates the [`SortProperties`] of this function based on its children's properties.
637 fn output_ordering(&self, inputs: &[ExprProperties]) -> Result<SortProperties> {
638 if !self.preserves_lex_ordering(inputs)? {
639 return Ok(SortProperties::Unordered);
640 }
641
642 let Some(first_order) = inputs.first().map(|p| &p.sort_properties) else {
643 return Ok(SortProperties::Singleton);
644 };
645
646 if inputs
647 .iter()
648 .skip(1)
649 .all(|input| &input.sort_properties == first_order)
650 {
651 Ok(*first_order)
652 } else {
653 Ok(SortProperties::Unordered)
654 }
655 }
656
657 /// Returns true if the function preserves lexicographical ordering based on
658 /// the input ordering.
659 ///
660 /// For example, `concat(a || b)` preserves lexicographical ordering, but `abs(a)` does not.
661 fn preserves_lex_ordering(&self, _inputs: &[ExprProperties]) -> Result<bool> {
662 Ok(false)
663 }
664
665 /// Coerce arguments of a function call to types that the function can evaluate.
666 ///
667 /// This function is only called if [`ScalarUDFImpl::signature`] returns
668 /// [`crate::TypeSignature::UserDefined`]. Most UDFs should return one of
669 /// the other variants of [`TypeSignature`] which handle common cases.
670 ///
671 /// See the [type coercion module](crate::type_coercion)
672 /// documentation for more details on type coercion
673 ///
674 /// [`TypeSignature`]: crate::TypeSignature
675 ///
676 /// For example, if your function requires a floating point arguments, but the user calls
677 /// it like `my_func(1::int)` (i.e. with `1` as an integer), coerce_types can return `[DataType::Float64]`
678 /// to ensure the argument is converted to `1::double`
679 ///
680 /// # Parameters
681 /// * `arg_types`: The argument types of the arguments this function with
682 ///
683 /// # Return value
684 /// A Vec the same length as `arg_types`. DataFusion will `CAST` the function call
685 /// arguments to these specific types.
686 fn coerce_types(&self, _arg_types: &[DataType]) -> Result<Vec<DataType>> {
687 not_impl_err!("Function {} does not implement coerce_types", self.name())
688 }
689
690 /// Return true if this scalar UDF is equal to the other.
691 ///
692 /// Allows customizing the equality of scalar UDFs.
693 /// Must be consistent with [`Self::hash_value`] and follow the same rules as [`Eq`]:
694 ///
695 /// - reflexive: `a.equals(a)`;
696 /// - symmetric: `a.equals(b)` implies `b.equals(a)`;
697 /// - transitive: `a.equals(b)` and `b.equals(c)` implies `a.equals(c)`.
698 ///
699 /// By default, compares [`Self::name`] and [`Self::signature`].
700 fn equals(&self, other: &dyn ScalarUDFImpl) -> bool {
701 self.name() == other.name() && self.signature() == other.signature()
702 }
703
704 /// Returns a hash value for this scalar UDF.
705 ///
706 /// Allows customizing the hash code of scalar UDFs. Similarly to [`Hash`] and [`Eq`],
707 /// if [`Self::equals`] returns true for two UDFs, their `hash_value`s must be the same.
708 ///
709 /// By default, hashes [`Self::name`] and [`Self::signature`].
710 fn hash_value(&self) -> u64 {
711 let hasher = &mut DefaultHasher::new();
712 self.name().hash(hasher);
713 self.signature().hash(hasher);
714 hasher.finish()
715 }
716
717 /// Returns the documentation for this Scalar UDF.
718 ///
719 /// Documentation can be accessed programmatically as well as generating
720 /// publicly facing documentation.
721 fn documentation(&self) -> Option<&Documentation> {
722 None
723 }
724}
725
726/// ScalarUDF that adds an alias to the underlying function. It is better to
727/// implement [`ScalarUDFImpl`], which supports aliases, directly if possible.
728#[derive(Debug)]
729struct AliasedScalarUDFImpl {
730 inner: Arc<dyn ScalarUDFImpl>,
731 aliases: Vec<String>,
732}
733
734impl AliasedScalarUDFImpl {
735 pub fn new(
736 inner: Arc<dyn ScalarUDFImpl>,
737 new_aliases: impl IntoIterator<Item = &'static str>,
738 ) -> Self {
739 let mut aliases = inner.aliases().to_vec();
740 aliases.extend(new_aliases.into_iter().map(|s| s.to_string()));
741 Self { inner, aliases }
742 }
743}
744
745impl ScalarUDFImpl for AliasedScalarUDFImpl {
746 fn as_any(&self) -> &dyn Any {
747 self
748 }
749
750 fn name(&self) -> &str {
751 self.inner.name()
752 }
753
754 fn display_name(&self, args: &[Expr]) -> Result<String> {
755 self.inner.display_name(args)
756 }
757
758 fn schema_name(&self, args: &[Expr]) -> Result<String> {
759 self.inner.schema_name(args)
760 }
761
762 fn signature(&self) -> &Signature {
763 self.inner.signature()
764 }
765
766 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
767 self.inner.return_type(arg_types)
768 }
769
770 fn return_field_from_args(&self, args: ReturnFieldArgs) -> Result<FieldRef> {
771 self.inner.return_field_from_args(args)
772 }
773
774 fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> {
775 self.inner.invoke_with_args(args)
776 }
777
778 fn aliases(&self) -> &[String] {
779 &self.aliases
780 }
781
782 fn simplify(
783 &self,
784 args: Vec<Expr>,
785 info: &dyn SimplifyInfo,
786 ) -> Result<ExprSimplifyResult> {
787 self.inner.simplify(args, info)
788 }
789
790 fn short_circuits(&self) -> bool {
791 self.inner.short_circuits()
792 }
793
794 fn evaluate_bounds(&self, input: &[&Interval]) -> Result<Interval> {
795 self.inner.evaluate_bounds(input)
796 }
797
798 fn propagate_constraints(
799 &self,
800 interval: &Interval,
801 inputs: &[&Interval],
802 ) -> Result<Option<Vec<Interval>>> {
803 self.inner.propagate_constraints(interval, inputs)
804 }
805
806 fn output_ordering(&self, inputs: &[ExprProperties]) -> Result<SortProperties> {
807 self.inner.output_ordering(inputs)
808 }
809
810 fn preserves_lex_ordering(&self, inputs: &[ExprProperties]) -> Result<bool> {
811 self.inner.preserves_lex_ordering(inputs)
812 }
813
814 fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
815 self.inner.coerce_types(arg_types)
816 }
817
818 fn equals(&self, other: &dyn ScalarUDFImpl) -> bool {
819 if let Some(other) = other.as_any().downcast_ref::<AliasedScalarUDFImpl>() {
820 self.inner.equals(other.inner.as_ref()) && self.aliases == other.aliases
821 } else {
822 false
823 }
824 }
825
826 fn hash_value(&self) -> u64 {
827 let hasher = &mut DefaultHasher::new();
828 self.inner.hash_value().hash(hasher);
829 self.aliases.hash(hasher);
830 hasher.finish()
831 }
832
833 fn documentation(&self) -> Option<&Documentation> {
834 self.inner.documentation()
835 }
836}
837
838// Scalar UDF doc sections for use in public documentation
839pub mod scalar_doc_sections {
840 use crate::DocSection;
841
842 pub fn doc_sections() -> Vec<DocSection> {
843 vec![
844 DOC_SECTION_MATH,
845 DOC_SECTION_CONDITIONAL,
846 DOC_SECTION_STRING,
847 DOC_SECTION_BINARY_STRING,
848 DOC_SECTION_REGEX,
849 DOC_SECTION_DATETIME,
850 DOC_SECTION_ARRAY,
851 DOC_SECTION_STRUCT,
852 DOC_SECTION_MAP,
853 DOC_SECTION_HASHING,
854 DOC_SECTION_UNION,
855 DOC_SECTION_OTHER,
856 ]
857 }
858
859 pub const fn doc_sections_const() -> &'static [DocSection] {
860 &[
861 DOC_SECTION_MATH,
862 DOC_SECTION_CONDITIONAL,
863 DOC_SECTION_STRING,
864 DOC_SECTION_BINARY_STRING,
865 DOC_SECTION_REGEX,
866 DOC_SECTION_DATETIME,
867 DOC_SECTION_ARRAY,
868 DOC_SECTION_STRUCT,
869 DOC_SECTION_MAP,
870 DOC_SECTION_HASHING,
871 DOC_SECTION_UNION,
872 DOC_SECTION_OTHER,
873 ]
874 }
875
876 pub const DOC_SECTION_MATH: DocSection = DocSection {
877 include: true,
878 label: "Math Functions",
879 description: None,
880 };
881
882 pub const DOC_SECTION_CONDITIONAL: DocSection = DocSection {
883 include: true,
884 label: "Conditional Functions",
885 description: None,
886 };
887
888 pub const DOC_SECTION_STRING: DocSection = DocSection {
889 include: true,
890 label: "String Functions",
891 description: None,
892 };
893
894 pub const DOC_SECTION_BINARY_STRING: DocSection = DocSection {
895 include: true,
896 label: "Binary String Functions",
897 description: None,
898 };
899
900 pub const DOC_SECTION_REGEX: DocSection = DocSection {
901 include: true,
902 label: "Regular Expression Functions",
903 description: Some(
904 r#"Apache DataFusion uses a [PCRE-like](https://en.wikibooks.org/wiki/Regular_Expressions/Perl-Compatible_Regular_Expressions)
905regular expression [syntax](https://docs.rs/regex/latest/regex/#syntax)
906(minus support for several features including look-around and backreferences).
907The following regular expression functions are supported:"#,
908 ),
909 };
910
911 pub const DOC_SECTION_DATETIME: DocSection = DocSection {
912 include: true,
913 label: "Time and Date Functions",
914 description: None,
915 };
916
917 pub const DOC_SECTION_ARRAY: DocSection = DocSection {
918 include: true,
919 label: "Array Functions",
920 description: None,
921 };
922
923 pub const DOC_SECTION_STRUCT: DocSection = DocSection {
924 include: true,
925 label: "Struct Functions",
926 description: None,
927 };
928
929 pub const DOC_SECTION_MAP: DocSection = DocSection {
930 include: true,
931 label: "Map Functions",
932 description: None,
933 };
934
935 pub const DOC_SECTION_HASHING: DocSection = DocSection {
936 include: true,
937 label: "Hashing Functions",
938 description: None,
939 };
940
941 pub const DOC_SECTION_OTHER: DocSection = DocSection {
942 include: true,
943 label: "Other Functions",
944 description: None,
945 };
946
947 pub const DOC_SECTION_UNION: DocSection = DocSection {
948 include: true,
949 label: "Union Functions",
950 description: Some("Functions to work with the union data type, also know as tagged unions, variant types, enums or sum types. Note: Not related to the SQL UNION operator"),
951 };
952}