意味 |
composition algebraとは 意味・読み方・使い方
追加できません
(登録数上限)
意味・対訳 数学における体 K 上の合成代数(ごうせいだいすう、composition algebra)は、K 上の(必ずしも結合的でない)単位的多元環 A で、乗法性条件 を満たす非退化二次形式 N を持つ。
Wiktionary英語版での「composition algebra」の意味 |
composition algebra
名詞
composition algebra (複数形 composition algebras)
- (algebra) A non-associative (not necessarily associative) algebra, A, over some field, together with a nondegenerate quadratic form, N, such that N(xy) = N(x)N(y) for all x, y ∈ A.
- 1993, F. L. Zak (translator かつ original author), Simeon Ivanov (editor), Tangents and Secants of Algebraic Varieties, American Mathematical Society, page 11,
- More precisely, is a Severi variety if and only if , where is the Jordan algebra of Hermitian (3 × 3)-matrices over a composition algebra , and corresponds to the cone of Hermitian matrices of rank (in that case corresponds to the cone of Hermitian matrices with vanishing determinant; cf. Theorem 4.8). In other words, is a Severi variety if and only if is the “Veronese surface” over one of the composition algebras over the field (Theorem 4.9).
- 1998, Max-Albert Knus, Alexander Merkurjev, Markus Rost, Jean-Pierre Tignol, The Book of Involutions, American Mathematical Society, page 464,
- We call a composition algebra with an associative norm a symmetric composition algebra and denote the full subcategory of consisting of symmetric composition algebras by .
- 2006, Alberto Elduque, Chapter 12: A new look at Freudenthal's Magic Square, Lev Sabinin, Larissa Sbitneva, Ivan Shestakov (editors, Non-Associative Algebra and Its Applications, Taylor & Francis Group (Chapman & Hall/CRC), page 150,
- At least in the split cases, this is a construction that depends on two unital composition algebras, since the Jordan algebra involved consists of the 3 x 3-hermitian matrices over a unital composition algebra.
- 1993, F. L. Zak (translator かつ original author), Simeon Ivanov (editor), Tangents and Secants of Algebraic Varieties, American Mathematical Society, page 11,
使用する際の注意点
- Formally, a tuple, , where is a nonassociative algebra, the mapping is an involution, called a conjugation, and is the quadratic form , called the norm of the algebra.
- A composition algebra may be:
- A split algebra if there exists some (called a null vector). In this case, is called an isotropic quadratic form and the algebra is said to split.
- A division algebra otherwise; so named because division, except by 0, is possible: the multiplicative inverse of is . In this case, is an anisotropic quadratic form.
上位語
- non-associative algebra
Further reading
- Division algebra on Wikipedia.
- Cayley–Dickson construction on Wikipedia.
- Freudenthal magic square on Wikipedia.
- Hurwitz's theorem (composition algebras) on Wikipedia.
- Null vector on Wikipedia.
- Quadratic form on Wikipedia.
- Isotropic quadratic form on Wikipedia.
- Division algebra on Encyclopedia of Mathematics
- composition algebra on nLab
- Division Algebra on Wolfram MathWorld
|
意味 |
|
composition algebraのページの著作権
英和・和英辞典
情報提供元は
参加元一覧
にて確認できます。
Text is available under Creative Commons Attribution-ShareAlike (CC-BY-SA) and/or GNU Free Documentation License (GFDL). Weblio英和・和英辞典に掲載されている「Wiktionary英語版」の記事は、Wiktionaryのcomposition algebra (改訂履歴)の記事を複製、再配布したものにあたり、Creative Commons Attribution-ShareAlike (CC-BY-SA)もしくはGNU Free Documentation Licenseというライセンスの下で提供されています。 |
ピン留めアイコンをクリックすると単語とその意味を画面の右側に残しておくことができます。 |
ログイン |
Weblio会員(無料)になると
|
「composition algebra」のお隣キーワード |
weblioのその他のサービス
ログイン |
Weblio会員(無料)になると
|