Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - SPAR: Personalized Content-Based Recommendation via Long Engagement
Attention
\n","updatedAt":"2024-06-08T20:55:58.867Z","author":{"_id":"6186ddf6a7717cb375090c01","avatarUrl":"/avatars/716b6a7d1094c8036b2a8a7b9063e8aa.svg","fullname":"Julien BLANCHON","name":"blanchon","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":176,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.5012816190719604},"editors":["blanchon"],"editorAvatarUrls":["/avatars/716b6a7d1094c8036b2a8a7b9063e8aa.svg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2402.10555","authors":[{"_id":"65d2dc3dc6f238f8687cd62e","user":{"_id":"5fb2d92a9f63b546e74cb399","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1653523921526-5fb2d92a9f63b546e74cb399.png","isPro":false,"fullname":"chiyu_zhang","user":"chiyuzhang","type":"user"},"name":"Chiyu Zhang","status":"admin_assigned","statusLastChangedAt":"2024-02-19T15:28:27.272Z","hidden":false},{"_id":"65d2dc3dc6f238f8687cd62f","user":{"_id":"65d3810882939b6bb21a453f","avatarUrl":"/avatars/31041112c610e531bb0fbfb1f0c43257.svg","isPro":false,"fullname":"Yifei Sun","user":"sunyifei","type":"user"},"name":"Yifei Sun","status":"claimed_verified","statusLastChangedAt":"2024-02-19T17:05:24.217Z","hidden":false},{"_id":"65d2dc3dc6f238f8687cd630","user":{"_id":"62f94ec077b722f186641192","avatarUrl":"/avatars/37f4c7f2b6f59e2eac2d1b1b5cc88269.svg","isPro":false,"fullname":"jun chen","user":"junchen14","type":"user"},"name":"Jun Chen","status":"admin_assigned","statusLastChangedAt":"2024-02-19T15:30:13.784Z","hidden":false},{"_id":"65d2dc3dc6f238f8687cd631","user":{"_id":"64e7be5c0c47bf287ca5baf5","avatarUrl":"/avatars/a82dec23bde346f1479049f74e55004b.svg","isPro":false,"fullname":"Jie Lei","user":"jielei","type":"user"},"name":"Jie Lei","status":"admin_assigned","statusLastChangedAt":"2024-02-19T15:30:21.278Z","hidden":false},{"_id":"65d2dc3dc6f238f8687cd632","user":{"_id":"5feeae8dd8e0b2d24ed258cc","avatarUrl":"/avatars/1d66840db4ed6dc12bdee7ba8168ea9f.svg","isPro":false,"fullname":"Muhammad Abdul-Mageed","user":"mageed","type":"user"},"name":"Muhammad Abdul-Mageed","status":"admin_assigned","statusLastChangedAt":"2024-02-19T15:30:37.096Z","hidden":false},{"_id":"65d2dc3dc6f238f8687cd633","user":{"_id":"65b483c5ed110eb9f1ee62df","avatarUrl":"/avatars/29100098f5aed1735675d06c516a85b7.svg","isPro":false,"fullname":"Theron S. Wang","user":"TheronWong","type":"user"},"name":"Sinong Wang","status":"admin_assigned","statusLastChangedAt":"2024-02-19T15:30:43.635Z","hidden":true},{"_id":"65d2dc3dc6f238f8687cd634","name":"Rong Jin","hidden":false},{"_id":"65d2dc3dc6f238f8687cd635","name":"Sem Park","hidden":false},{"_id":"65d2dc3dc6f238f8687cd636","name":"Ning Yao","hidden":false},{"_id":"65d2dc3dc6f238f8687cd637","name":"Bo Long","hidden":false}],"publishedAt":"2024-02-16T10:36:38.000Z","submittedOnDailyAt":"2024-02-19T02:12:37.695Z","title":"SPAR: Personalized Content-Based Recommendation via Long Engagement\n Attention","submittedOnDailyBy":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","isPro":false,"fullname":"AK","user":"akhaliq","type":"user"},"summary":"Leveraging users' long engagement histories is essential for personalized\ncontent recommendations. The success of pretrained language models (PLMs) in\nNLP has led to their use in encoding user histories and candidate items,\nframing content recommendations as textual semantic matching tasks. However,\nexisting works still struggle with processing very long user historical text\nand insufficient user-item interaction. In this paper, we introduce a\ncontent-based recommendation framework, SPAR, which effectively tackles the\nchallenges of holistic user interest extraction from the long user engagement\nhistory. It achieves so by leveraging PLM, poly-attention layers and attention\nsparsity mechanisms to encode user's history in a session-based manner. The\nuser and item side features are sufficiently fused for engagement prediction\nwhile maintaining standalone representations for both sides, which is efficient\nfor practical model deployment. Moreover, we enhance user profiling by\nexploiting large language model (LLM) to extract global interests from user\nengagement history. Extensive experiments on two benchmark datasets demonstrate\nthat our framework outperforms existing state-of-the-art (SoTA) methods.","upvotes":35,"discussionId":"65d2dc3dc6f238f8687cd64e","githubRepo":"https://github.com/jyonn/legommenders","githubRepoAddedBy":"auto","ai_summary":"The SPAR framework enhances content recommendations by using pretrained language models, poly-attention layers, and large language models to effectively process long user engagement histories and predict user-item interactions.","ai_keywords":["pretrained language models","poly-attention layers","attention sparsity mechanisms","large language models"],"githubStars":30},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"62885a9182e8b16fb143ba16","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1653103235388-noauth.jpeg","isPro":false,"fullname":"Jun Naito","user":"njun","type":"user"},{"_id":"6538119803519fddb4a17e10","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6538119803519fddb4a17e10/ffJMkdx-rM7VvLTCM6ri_.jpeg","isPro":false,"fullname":"samusenps","user":"samusenps","type":"user"},{"_id":"65d3c56682939b6bb2303c27","avatarUrl":"/avatars/89c5351dcc43c4b2f9ab47e6969afa45.svg","isPro":false,"fullname":"Amit siwal","user":"siwal","type":"user"},{"_id":"61a9e0d0629526edf57094f3","avatarUrl":"/avatars/77ccc569d50ef68d4bf663623993a200.svg","isPro":false,"fullname":"Agis Oikonomou","user":"agipof","type":"user"},{"_id":"64dabbb0aeec6bc7c8a92bea","avatarUrl":"/avatars/ff729cba034da9d4911cfe02fa8f321c.svg","isPro":false,"fullname":"Joseph C Steward","user":"jsteward2930","type":"user"},{"_id":"5feeae8dd8e0b2d24ed258cc","avatarUrl":"/avatars/1d66840db4ed6dc12bdee7ba8168ea9f.svg","isPro":false,"fullname":"Muhammad Abdul-Mageed","user":"mageed","type":"user"},{"_id":"641aa07e91e3376a057b95b6","avatarUrl":"/avatars/1c33146dd10b88ba594ef610c8137672.svg","isPro":false,"fullname":"Yihang He","user":"clicktoedit233","type":"user"},{"_id":"5fb2d92a9f63b546e74cb399","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1653523921526-5fb2d92a9f63b546e74cb399.png","isPro":false,"fullname":"chiyu_zhang","user":"chiyuzhang","type":"user"},{"_id":"62fd83d2cad078c7973099a9","avatarUrl":"/avatars/62e9e4e53a42945c51b1296955f5d760.svg","isPro":true,"fullname":"Md Tawkat Islam Khondaker","user":"Tawkat","type":"user"},{"_id":"65c55330e286dbda4e81c9a6","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/65c55330e286dbda4e81c9a6/1goq_45j5AVWjxfNavBgk.jpeg","isPro":false,"fullname":"Wei Rui Chen","user":"wrchen1","type":"user"},{"_id":"644040d77841867cd5b4d670","avatarUrl":"/avatars/0fc982cc2e2baaaf673f1871de51520a.svg","isPro":false,"fullname":"Peter Sullivan","user":"prsull","type":"user"},{"_id":"630fc966dd31b2a8dbe6699e","avatarUrl":"/avatars/f9d1d2ffaf347dc6c848037a001dd1ae.svg","isPro":false,"fullname":"Alcides Alcoba Inciarte","user":"Al-Alcoba-Inciarte","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":3}">
The SPAR framework enhances content recommendations by using pretrained language models, poly-attention layers, and large language models to effectively process long user engagement histories and predict user-item interactions.
AI-generated summary
Leveraging users' long engagement histories is essential for personalized
content recommendations. The success of pretrained language models (PLMs) in
NLP has led to their use in encoding user histories and candidate items,
framing content recommendations as textual semantic matching tasks. However,
existing works still struggle with processing very long user historical text
and insufficient user-item interaction. In this paper, we introduce a
content-based recommendation framework, SPAR, which effectively tackles the
challenges of holistic user interest extraction from the long user engagement
history. It achieves so by leveraging PLM, poly-attention layers and attention
sparsity mechanisms to encode user's history in a session-based manner. The
user and item side features are sufficiently fused for engagement prediction
while maintaining standalone representations for both sides, which is efficient
for practical model deployment. Moreover, we enhance user profiling by
exploiting large language model (LLM) to extract global interests from user
engagement history. Extensive experiments on two benchmark datasets demonstrate
that our framework outperforms existing state-of-the-art (SoTA) methods.