Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT
\n","updatedAt":"2024-06-09T05:06:29.108Z","author":{"_id":"6186ddf6a7717cb375090c01","avatarUrl":"/avatars/716b6a7d1094c8036b2a8a7b9063e8aa.svg","fullname":"Julien BLANCHON","name":"blanchon","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":176,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.48521843552589417},"editors":["blanchon"],"editorAvatarUrls":["/avatars/716b6a7d1094c8036b2a8a7b9063e8aa.svg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2402.16840","authors":[{"_id":"65dd76e84a4fce1ec96347f4","user":{"_id":"64b7d2ad8c632fbca9507431","avatarUrl":"/avatars/76c31ea218108cf6c3715269f7605404.svg","isPro":false,"fullname":"Omkar Thawakar","user":"omkarthawakar","type":"user"},"name":"Omkar Thawakar","status":"admin_assigned","statusLastChangedAt":"2024-02-27T10:29:58.983Z","hidden":false},{"_id":"65dd76e84a4fce1ec96347f5","user":{"_id":"64f9d0ded88459d40bd0efb9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64f9d0ded88459d40bd0efb9/16Y41IUX0T_TZj_g_tTBF.jpeg","isPro":false,"fullname":"Ashmal Vayani","user":"Ashmal","type":"user"},"name":"Ashmal Vayani","status":"admin_assigned","statusLastChangedAt":"2024-02-27T10:30:14.795Z","hidden":false},{"_id":"65dd76e84a4fce1ec96347f6","name":"Salman Khan","hidden":false},{"_id":"65dd76e84a4fce1ec96347f7","user":{"_id":"654a5f4f9b8bd6406d45bb46","avatarUrl":"/avatars/ac0d7eef62cd98a280b162cf7896b1a2.svg","isPro":false,"fullname":"Hisham Cholakkal","user":"hishamcholakkal","type":"user"},"name":"Hisham Cholakal","status":"admin_assigned","statusLastChangedAt":"2024-02-27T10:30:47.610Z","hidden":false},{"_id":"65dd76e84a4fce1ec96347f8","name":"Rao M. Anwer","hidden":false},{"_id":"65dd76e84a4fce1ec96347f9","user":{"_id":"63d38a1a9e1b81818c816905","avatarUrl":"/avatars/a2160bb9fbb8a8eec129b8eab559294b.svg","isPro":false,"fullname":"Michael Felsberg","user":"CVL-LiU","type":"user"},"name":"Michael Felsberg","status":"admin_assigned","statusLastChangedAt":"2024-02-27T10:31:08.550Z","hidden":false},{"_id":"65dd76e84a4fce1ec96347fa","user":{"_id":"65d895d8d435dce78392065f","avatarUrl":"/avatars/68c7185d3dd1adf78927b91849978d62.svg","isPro":false,"fullname":"Tim Baldwin","user":"tbaldwin","type":"user"},"name":"Tim Baldwin","status":"admin_assigned","statusLastChangedAt":"2024-02-27T10:31:14.438Z","hidden":false},{"_id":"65dd76e84a4fce1ec96347fb","user":{"_id":"64ff67722ad36636be6c4542","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/sLIrNelAWPVOy4e3oo5LB.jpeg","isPro":false,"fullname":"Eric Xing","user":"EricX003","type":"user"},"name":"Eric P. Xing","status":"admin_assigned","statusLastChangedAt":"2024-02-27T10:31:25.777Z","hidden":false},{"_id":"65dd76e84a4fce1ec96347fc","name":"Fahad Shahbaz Khan","hidden":false}],"publishedAt":"2024-02-26T18:59:03.000Z","submittedOnDailyAt":"2024-02-27T03:15:13.066Z","title":"MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT","submittedOnDailyBy":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","isPro":false,"fullname":"AK","user":"akhaliq","type":"user"},"summary":"\"Bigger the better\" has been the predominant trend in recent Large Language\nModels (LLMs) development. However, LLMs do not suit well for scenarios that\nrequire on-device processing, energy efficiency, low memory footprint, and\nresponse efficiency. These requisites are crucial for privacy, security, and\nsustainable deployment. This paper explores the \"less is more\" paradigm by\naddressing the challenge of designing accurate yet efficient Small Language\nModels (SLMs) for resource constrained devices. Our primary contribution is the\nintroduction of an accurate and fully transparent open-source 0.5 billion\n(0.5B) parameter SLM, named MobiLlama, catering to the specific needs of\nresource-constrained computing with an emphasis on enhanced performance with\nreduced resource demands. MobiLlama is a SLM design that initiates from a\nlarger model and applies a careful parameter sharing scheme to reduce both the\npre-training and the deployment cost. Our work strives to not only bridge the\ngap in open-source SLMs but also ensures full transparency, where complete\ntraining data pipeline, training code, model weights, and over 300 checkpoints\nalong with evaluation codes is available at :\nhttps://github.com/mbzuai-oryx/MobiLlama.","upvotes":25,"discussionId":"65dd76e94a4fce1ec9634815","githubRepo":"https://github.com/mbzuai-oryx/mobillama","githubRepoAddedBy":"auto","ai_summary":"MobiLlama is a 0.5 billion parameter small language model designed for resource-constrained devices using parameter sharing to balance accuracy and efficiency.","ai_keywords":["Large Language Models","Small Language Models","resource constrained devices","parameter sharing","MobiLlama","pre-training","deployment cost","full transparency","training data pipeline","training code","model weights","checkpoints","evaluation codes"],"githubStars":668},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"62d1ddfac58f969c1528f1b5","avatarUrl":"/avatars/75c372a831cde3c7c6dce3bc875488a7.svg","isPro":false,"fullname":"Kalle Hilsenbek","user":"Bachstelze","type":"user"},{"_id":"6362ddb7d3be91534c30bfd6","avatarUrl":"/avatars/dac76ebd3b8a08099497ec0b0524bc7c.svg","isPro":false,"fullname":"Art Atk","user":"ArtAtk","type":"user"},{"_id":"6538119803519fddb4a17e10","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6538119803519fddb4a17e10/ffJMkdx-rM7VvLTCM6ri_.jpeg","isPro":false,"fullname":"samusenps","user":"samusenps","type":"user"},{"_id":"64747f7e33192631bacd8831","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64747f7e33192631bacd8831/dstkZJ4sHJSeqLesV5cOC.jpeg","isPro":false,"fullname":"Taufiq Dwi Purnomo","user":"taufiqdp","type":"user"},{"_id":"6396e5e14933295d5c9ae306","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1670833600406-noauth.png","isPro":false,"fullname":"KeronDev","user":"Keron","type":"user"},{"_id":"64b7d2ad8c632fbca9507431","avatarUrl":"/avatars/76c31ea218108cf6c3715269f7605404.svg","isPro":false,"fullname":"Omkar Thawakar","user":"omkarthawakar","type":"user"},{"_id":"6378fcde667ed02bb915cdc3","avatarUrl":"/avatars/69a7abaee92f4e53bf722f8a0833b2b1.svg","isPro":false,"fullname":"Vaibhav Singh","user":"veb-101","type":"user"},{"_id":"641a6c5919fc5647be1918f8","avatarUrl":"/avatars/c03297c68f90b9cdb7adc1f21c724dce.svg","isPro":false,"fullname":"David Euler","user":"davideuler","type":"user"},{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"65953f3a078efa3255dae953","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/26H96hHlCmCf8a31TKV48.jpeg","isPro":false,"fullname":"Mosaab Muhammad","user":"Mosaabx","type":"user"},{"_id":"654a5f4f9b8bd6406d45bb46","avatarUrl":"/avatars/ac0d7eef62cd98a280b162cf7896b1a2.svg","isPro":false,"fullname":"Hisham Cholakkal","user":"hishamcholakkal","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
MobiLlama is a 0.5 billion parameter small language model designed for resource-constrained devices using parameter sharing to balance accuracy and efficiency.
AI-generated summary
"Bigger the better" has been the predominant trend in recent Large Language
Models (LLMs) development. However, LLMs do not suit well for scenarios that
require on-device processing, energy efficiency, low memory footprint, and
response efficiency. These requisites are crucial for privacy, security, and
sustainable deployment. This paper explores the "less is more" paradigm by
addressing the challenge of designing accurate yet efficient Small Language
Models (SLMs) for resource constrained devices. Our primary contribution is the
introduction of an accurate and fully transparent open-source 0.5 billion
(0.5B) parameter SLM, named MobiLlama, catering to the specific needs of
resource-constrained computing with an emphasis on enhanced performance with
reduced resource demands. MobiLlama is a SLM design that initiates from a
larger model and applies a careful parameter sharing scheme to reduce both the
pre-training and the deployment cost. Our work strives to not only bridge the
gap in open-source SLMs but also ensures full transparency, where complete
training data pipeline, training code, model weights, and over 300 checkpoints
along with evaluation codes is available at :
https://github.com/mbzuai-oryx/MobiLlama.