Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - VideoMamba: State Space Model for Efficient Video Understanding
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2024-03-14T01:22:17.855Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7658246755599976},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[{"reaction":"๐","users":["Parthai"],"count":1}],"isReport":false}},{"id":"66652957382f6b0a96ce204a","author":{"_id":"6186ddf6a7717cb375090c01","avatarUrl":"/avatars/716b6a7d1094c8036b2a8a7b9063e8aa.svg","fullname":"Julien BLANCHON","name":"blanchon","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":176,"isUserFollowing":false},"createdAt":"2024-06-09T04:02:31.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"# VideoMamba Unleashed: Next-Gen State Space Model for Video Mastery\n\nhttps://cdn-uploads.huggingface.co/production/uploads/6186ddf6a7717cb375090c01/wJsDVn8BwAMuDj7SgYvjj.mp4 \n\n## Links ๐:\n๐ Subscribe: https://www.youtube.com/@Arxflix\n๐ Twitter: https://x.com/arxflix\n๐ LMNT (Partner): https://lmnt.com/\n\n\nBy Arxflix\n","html":"
\n\t\n\t\t\n\t\n\t\n\t\tVideoMamba Unleashed: Next-Gen State Space Model for Video Mastery\n\t\n
\n","updatedAt":"2024-06-09T04:02:31.869Z","author":{"_id":"6186ddf6a7717cb375090c01","avatarUrl":"/avatars/716b6a7d1094c8036b2a8a7b9063e8aa.svg","fullname":"Julien BLANCHON","name":"blanchon","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":176,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.5122768878936768},"editors":["blanchon"],"editorAvatarUrls":["/avatars/716b6a7d1094c8036b2a8a7b9063e8aa.svg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2403.06977","authors":[{"_id":"65efca60e2f3a2d6588c8360","user":{"_id":"61fb81006374891646732f37","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1643872995181-61fb81006374891646732f37.jpeg","isPro":false,"fullname":"Kunchang Li","user":"Andy1621","type":"user"},"name":"Kunchang Li","status":"claimed_verified","statusLastChangedAt":"2024-03-12T12:06:04.510Z","hidden":false},{"_id":"65efca60e2f3a2d6588c8361","user":{"_id":"64171b10f1e86908935a493a","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64171b10f1e86908935a493a/tAwbHgTw714Vz-Qudz6Ij.jpeg","isPro":false,"fullname":"Xinhao Li","user":"lixinhao","type":"user"},"name":"Xinhao Li","status":"claimed_verified","statusLastChangedAt":"2025-05-26T08:48:46.432Z","hidden":false},{"_id":"65efca60e2f3a2d6588c8362","name":"Yi Wang","hidden":false},{"_id":"65efca60e2f3a2d6588c8363","user":{"_id":"62aafa49f29ff279b51f0182","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/62aafa49f29ff279b51f0182/rQx8QFQGOY2qIhqJ8zSRj.jpeg","isPro":false,"fullname":"yinanhe","user":"ynhe","type":"user"},"name":"Yinan He","status":"claimed_verified","statusLastChangedAt":"2024-03-18T08:36:40.805Z","hidden":false},{"_id":"65efca60e2f3a2d6588c8364","name":"Yali Wang","hidden":false},{"_id":"65efca60e2f3a2d6588c8365","user":{"_id":"62c77f4352d8ae531f5511f9","avatarUrl":"/avatars/50198ccb02ccd286975a4613fbabee28.svg","isPro":false,"fullname":"Limin Wang","user":"lmwang","type":"user"},"name":"Limin Wang","status":"admin_assigned","statusLastChangedAt":"2024-03-12T12:24:18.661Z","hidden":false},{"_id":"65efca60e2f3a2d6588c8366","name":"Yu Qiao","hidden":false}],"publishedAt":"2024-03-11T17:59:34.000Z","submittedOnDailyAt":"2024-03-12T01:52:08.669Z","title":"VideoMamba: State Space Model for Efficient Video Understanding","submittedOnDailyBy":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","isPro":false,"fullname":"AK","user":"akhaliq","type":"user"},"summary":"Addressing the dual challenges of local redundancy and global dependencies in\nvideo understanding, this work innovatively adapts the Mamba to the video\ndomain. The proposed VideoMamba overcomes the limitations of existing 3D\nconvolution neural networks and video transformers. Its linear-complexity\noperator enables efficient long-term modeling, which is crucial for\nhigh-resolution long video understanding. Extensive evaluations reveal\nVideoMamba's four core abilities: (1) Scalability in the visual domain without\nextensive dataset pretraining, thanks to a novel self-distillation technique;\n(2) Sensitivity for recognizing short-term actions even with fine-grained\nmotion differences; (3) Superiority in long-term video understanding,\nshowcasing significant advancements over traditional feature-based models; and\n(4) Compatibility with other modalities, demonstrating robustness in\nmulti-modal contexts. Through these distinct advantages, VideoMamba sets a new\nbenchmark for video understanding, offering a scalable and efficient solution\nfor comprehensive video understanding. All the code and models are available at\nhttps://github.com/OpenGVLab/VideoMamba.","upvotes":29,"discussionId":"65efca60e2f3a2d6588c8395","githubRepo":"https://github.com/opengvlab/videomamba","githubRepoAddedBy":"auto","ai_summary":"VideoMamba, an adaptation of Mamba, addresses local and global challenges in video understanding through a linear-complexity operator, self-distillation, and compatibility with multiple modalities, setting a new benchmark.","ai_keywords":["Mamba","VideoMamba","3D convolution neural networks","video transformers","linear-complexity operator","self-distillation","short-term actions","long-term video understanding","feature-based models","multi-modal contexts"],"githubStars":1080},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"655ac762cb17ec19ef82719b","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/655ac762cb17ec19ef82719b/1kDncYrGLYS_2SR8cNdAL.png","isPro":false,"fullname":"Welcome to matlok","user":"matlok","type":"user"},{"_id":"630c2ddb86b8b9904c3860a6","avatarUrl":"/avatars/9b6cec2e9e269ccac1533eb7bf1ac2c5.svg","isPro":false,"fullname":"Igor Melnyk","user":"imelnyk","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"61fb81006374891646732f37","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1643872995181-61fb81006374891646732f37.jpeg","isPro":false,"fullname":"Kunchang Li","user":"Andy1621","type":"user"},{"_id":"633b71b47af633cbcd0671d8","avatarUrl":"/avatars/6671941ced18ae516db6ebfbf73e239f.svg","isPro":false,"fullname":"juand4bot","user":"juandavidgf","type":"user"},{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"6289e1e6c65096f8c63be40e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1653203427026-noauth.png","isPro":false,"fullname":"LazyPig","user":"SakuraD","type":"user"},{"_id":"6289e290edfa7a816db76774","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1653203591668-noauth.png","isPro":false,"fullname":"Jack","user":"Jack9585","type":"user"},{"_id":"6538119803519fddb4a17e10","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6538119803519fddb4a17e10/ffJMkdx-rM7VvLTCM6ri_.jpeg","isPro":false,"fullname":"samusenps","user":"samusenps","type":"user"},{"_id":"63ddc7b80f6d2d6c3efe3600","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63ddc7b80f6d2d6c3efe3600/RX5q9T80Jl3tn6z03ls0l.jpeg","isPro":false,"fullname":"J","user":"dashfunnydashdash","type":"user"},{"_id":"63053858acc17ce4ad3580e6","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63053858acc17ce4ad3580e6/Fg1bMOPRpOhk6xMhnCOi4.jpeg","isPro":false,"fullname":"Zhongpai Gao","user":"gaozhongpai","type":"user"},{"_id":"628de07e47dd49ea6c959d71","avatarUrl":"/avatars/1bd61550d8966f3aec3acf57cd4894f7.svg","isPro":false,"fullname":"linxi","user":"linxi","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
VideoMamba, an adaptation of Mamba, addresses local and global challenges in video understanding through a linear-complexity operator, self-distillation, and compatibility with multiple modalities, setting a new benchmark.
AI-generated summary
Addressing the dual challenges of local redundancy and global dependencies in
video understanding, this work innovatively adapts the Mamba to the video
domain. The proposed VideoMamba overcomes the limitations of existing 3D
convolution neural networks and video transformers. Its linear-complexity
operator enables efficient long-term modeling, which is crucial for
high-resolution long video understanding. Extensive evaluations reveal
VideoMamba's four core abilities: (1) Scalability in the visual domain without
extensive dataset pretraining, thanks to a novel self-distillation technique;
(2) Sensitivity for recognizing short-term actions even with fine-grained
motion differences; (3) Superiority in long-term video understanding,
showcasing significant advancements over traditional feature-based models; and
(4) Compatibility with other modalities, demonstrating robustness in
multi-modal contexts. Through these distinct advantages, VideoMamba sets a new
benchmark for video understanding, offering a scalable and efficient solution
for comprehensive video understanding. All the code and models are available at
https://github.com/OpenGVLab/VideoMamba.