Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - LLaVA-Critic: Learning to Evaluate Multimodal Models
https://llava-vl.github.io/blog/2024-10-03-llava-critic/\n","updatedAt":"2024-10-04T02:25:11.527Z","author":{"_id":"64c039128e2612254356bba5","avatarUrl":"/avatars/06cc76feebba0cc80ebb8f4ff86f6d9b.svg","fullname":"Quanquan Gu","name":"thughost","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":26,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.254848450422287},"editors":["thughost"],"editorAvatarUrls":["/avatars/06cc76feebba0cc80ebb8f4ff86f6d9b.svg"],"reactions":[{"reaction":"🔥","users":["AdinaY","cataluna84","russwang"],"count":3}],"isReport":false}},{"id":"66ffaa8b2eced37b1c82cf2b","author":{"_id":"63a369d98c0c89dcae3b8329","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63a369d98c0c89dcae3b8329/AiH2zjy1cnt9OADAAZMLD.jpeg","fullname":"Adina Yakefu","name":"AdinaY","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":1145,"isUserFollowing":false},"createdAt":"2024-10-04T08:42:51.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"Interesting paper! Thanks for sharing @thughost. ","html":"
Interesting paper! Thanks for sharing \n\n@thughost\n\t.
\n","updatedAt":"2024-10-04T08:42:51.886Z","author":{"_id":"63a369d98c0c89dcae3b8329","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63a369d98c0c89dcae3b8329/AiH2zjy1cnt9OADAAZMLD.jpeg","fullname":"Adina Yakefu","name":"AdinaY","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":1145,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7883646488189697},"editors":["AdinaY"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/63a369d98c0c89dcae3b8329/AiH2zjy1cnt9OADAAZMLD.jpeg"],"reactions":[],"isReport":false}},{"id":"670097a53c2e742ab8ea495b","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false},"createdAt":"2024-10-05T01:34:29.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\nThe following papers were recommended by the Semantic Scholar API \n\n* [LLaVaOLMoBitnet1B: Ternary LLM goes Multimodal!](https://huggingface.co/papers/2408.13402) (2024)\n* [A Survey on Multimodal Benchmarks: In the Era of Large AI Models](https://huggingface.co/papers/2409.18142) (2024)\n* [xGen-MM (BLIP-3): A Family of Open Large Multimodal Models](https://huggingface.co/papers/2408.08872) (2024)\n* [LLaVA-OneVision: Easy Visual Task Transfer](https://huggingface.co/papers/2408.03326) (2024)\n* [Visual Question Decomposition on Multimodal Large Language Models](https://huggingface.co/papers/2409.19339) (2024)\n\n\n Please give a thumbs up to this comment if you found it helpful!\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`","html":"
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
\n
The following papers were recommended by the Semantic Scholar API
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2024-10-05T01:34:29.228Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2410.02712","authors":[{"_id":"66ff51ed9e1143bff207d587","user":{"_id":"6570977f87a92b76922c9950","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6570977f87a92b76922c9950/AQGto1w6ugBvH2yCV46YU.jpeg","isPro":false,"fullname":"Tianyi Xiong","user":"txiong23","type":"user"},"name":"Tianyi Xiong","status":"admin_assigned","statusLastChangedAt":"2024-10-04T08:41:36.661Z","hidden":false},{"_id":"66ff51ed9e1143bff207d588","user":{"_id":"655fed9fdef5905d38b84af3","avatarUrl":"/avatars/2cda4182dfd11a1e94743639e62328ea.svg","isPro":false,"fullname":"Xiyao Wang","user":"russwang","type":"user"},"name":"Xiyao Wang","status":"admin_assigned","statusLastChangedAt":"2024-10-04T08:44:04.812Z","hidden":false},{"_id":"66ff51ed9e1143bff207d589","name":"Dong Guo","hidden":false},{"_id":"66ff51ed9e1143bff207d58a","user":{"_id":"64530fc01a57e1179c1fe4c0","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/0lncTpIHXn6suB0p-oSma.jpeg","isPro":false,"fullname":"QinghaoYe","user":"MAGAer13","type":"user"},"name":"Qinghao Ye","status":"claimed_verified","statusLastChangedAt":"2025-05-22T07:19:34.463Z","hidden":false},{"_id":"66ff51ed9e1143bff207d58b","name":"Haoqi Fan","hidden":false},{"_id":"66ff51ed9e1143bff207d58c","user":{"_id":"64c039128e2612254356bba5","avatarUrl":"/avatars/06cc76feebba0cc80ebb8f4ff86f6d9b.svg","isPro":false,"fullname":"Quanquan Gu","user":"thughost","type":"user"},"name":"Quanquan Gu","status":"admin_assigned","statusLastChangedAt":"2024-10-04T08:41:11.820Z","hidden":false},{"_id":"66ff51ed9e1143bff207d58d","user":{"_id":"6527bc6b34bf5ece73da426d","avatarUrl":"/avatars/120739a9ac84e7319d9ea157a63dc547.svg","isPro":false,"fullname":"henghuang","user":"henghuang","type":"user"},"name":"Heng Huang","status":"admin_assigned","statusLastChangedAt":"2024-10-04T08:43:29.377Z","hidden":false},{"_id":"66ff51ed9e1143bff207d58e","user":{"_id":"62aba526cae4462c0c6caa0f","avatarUrl":"/avatars/430560ec2c2547f819225769ab432f30.svg","isPro":false,"fullname":"Chunyuan Li","user":"Chunyuan24","type":"user"},"name":"Chunyuan Li","status":"admin_assigned","statusLastChangedAt":"2024-10-04T08:43:01.990Z","hidden":false}],"publishedAt":"2024-10-03T17:36:33.000Z","submittedOnDailyAt":"2024-10-04T00:55:11.521Z","title":"LLaVA-Critic: Learning to Evaluate Multimodal Models","submittedOnDailyBy":{"_id":"64c039128e2612254356bba5","avatarUrl":"/avatars/06cc76feebba0cc80ebb8f4ff86f6d9b.svg","isPro":false,"fullname":"Quanquan Gu","user":"thughost","type":"user"},"summary":"We introduce LLaVA-Critic, the first open-source large multimodal model (LMM)\ndesigned as a generalist evaluator to assess performance across a wide range of\nmultimodal tasks. LLaVA-Critic is trained using a high-quality critic\ninstruction-following dataset that incorporates diverse evaluation criteria and\nscenarios. Our experiments demonstrate the model's effectiveness in two key\nareas: (1) LMM-as-a-Judge, where LLaVA-Critic provides reliable evaluation\nscores, performing on par with or surpassing GPT models on multiple evaluation\nbenchmarks; and (2) Preference Learning, where it generates reward signals for\npreference learning, enhancing model alignment capabilities. This work\nunderscores the potential of open-source LMMs in self-critique and evaluation,\nsetting the stage for future research into scalable, superhuman alignment\nfeedback mechanisms for LMMs.","upvotes":37,"discussionId":"66ff51ee9e1143bff207d5d8","ai_summary":"LLaVA-Critic, an open-source large multimodal model, effectively evaluates multimodal tasks and provides reliable scores, surpassing GPT models, and enhances preference learning for model alignment.","ai_keywords":["large multimodal model","LMM","instruction-following dataset","evaluation criteria","LMM-as-a-Judge","GPT models","evaluation benchmarks","Preference Learning","reward signals","model alignment","superhuman alignment feedback mechanisms"]},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"64c039128e2612254356bba5","avatarUrl":"/avatars/06cc76feebba0cc80ebb8f4ff86f6d9b.svg","isPro":false,"fullname":"Quanquan Gu","user":"thughost","type":"user"},{"_id":"62a993d80472c0b7f94027df","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/62a993d80472c0b7f94027df/j5vp-IwLA2YBexylUHiQU.png","isPro":false,"fullname":"Zhang Yuanhan","user":"ZhangYuanhan","type":"user"},{"_id":"647bf082aba7062fe5c51ca9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/647bf082aba7062fe5c51ca9/VvKAhQC_LxBcBuy3XROSX.jpeg","isPro":false,"fullname":"Yifan Zhang","user":"yifAI","type":"user"},{"_id":"655fed9fdef5905d38b84af3","avatarUrl":"/avatars/2cda4182dfd11a1e94743639e62328ea.svg","isPro":false,"fullname":"Xiyao Wang","user":"russwang","type":"user"},{"_id":"6570977f87a92b76922c9950","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6570977f87a92b76922c9950/AQGto1w6ugBvH2yCV46YU.jpeg","isPro":false,"fullname":"Tianyi Xiong","user":"txiong23","type":"user"},{"_id":"64b762568c632fbca942a405","avatarUrl":"/avatars/1eb737ec169967872f1ebf5ff29f1e6b.svg","isPro":false,"fullname":"Yinfei Yang","user":"yinfeiy","type":"user"},{"_id":"62aba526cae4462c0c6caa0f","avatarUrl":"/avatars/430560ec2c2547f819225769ab432f30.svg","isPro":false,"fullname":"Chunyuan Li","user":"Chunyuan24","type":"user"},{"_id":"63916d6c239695d2240858a1","avatarUrl":"/avatars/d58cab782c176024f59a602ba83aa0c7.svg","isPro":false,"fullname":"Dong Guo","user":"dguo-explore","type":"user"},{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"668cd4bbe990292e5f6974d3","avatarUrl":"/avatars/d1747b2372e94500ecb5fb56809b482d.svg","isPro":false,"fullname":"Jinyeong Kim","user":"rubatoyeong","type":"user"},{"_id":"6270324ebecab9e2dcf245de","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6270324ebecab9e2dcf245de/cMbtWSasyNlYc9hvsEEzt.jpeg","isPro":false,"fullname":"Kye Gomez","user":"kye","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
LLaVA-Critic, an open-source large multimodal model, effectively evaluates multimodal tasks and provides reliable scores, surpassing GPT models, and enhances preference learning for model alignment.
AI-generated summary
We introduce LLaVA-Critic, the first open-source large multimodal model (LMM)
designed as a generalist evaluator to assess performance across a wide range of
multimodal tasks. LLaVA-Critic is trained using a high-quality critic
instruction-following dataset that incorporates diverse evaluation criteria and
scenarios. Our experiments demonstrate the model's effectiveness in two key
areas: (1) LMM-as-a-Judge, where LLaVA-Critic provides reliable evaluation
scores, performing on par with or surpassing GPT models on multiple evaluation
benchmarks; and (2) Preference Learning, where it generates reward signals for
preference learning, enhancing model alignment capabilities. This work
underscores the potential of open-source LMMs in self-critique and evaluation,
setting the stage for future research into scalable, superhuman alignment
feedback mechanisms for LMMs.