Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - Baichuan Alignment Technical Report
\n","updatedAt":"2024-10-22T02:47:50.687Z","author":{"_id":"6415947858a690df103af49f","avatarUrl":"/avatars/38aec23b869833bceb25b9250809b419.svg","fullname":"lma","name":"lin5547","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":5,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.4119432270526886},"editors":["lin5547"],"editorAvatarUrls":["/avatars/38aec23b869833bceb25b9250809b419.svg"],"reactions":[],"isReport":false}},{"id":"671852be9502c51ca1fe186a","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false},"createdAt":"2024-10-23T01:34:54.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\nThe following papers were recommended by the Semantic Scholar API \n\n* [SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding](https://huggingface.co/papers/2408.15545) (2024)\n* [Data-Efficient Massive Tool Retrieval: A Reinforcement Learning Approach for Query-Tool Alignment with Language Models](https://huggingface.co/papers/2410.03212) (2024)\n* [KodeXv0.1: A Family of State-of-the-Art Financial Large Language Models](https://huggingface.co/papers/2409.13749) (2024)\n* [GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval](https://huggingface.co/papers/2409.10909) (2024)\n* [Packing Analysis: Packing Is More Appropriate for Large Models or Datasets in Supervised Fine-tuning](https://huggingface.co/papers/2410.08081) (2024)\n\n\n Please give a thumbs up to this comment if you found it helpful!\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`","html":"
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
\n
The following papers were recommended by the Semantic Scholar API
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2024-10-23T01:34:54.745Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7384092807769775},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2410.14940","authors":[{"_id":"671712096914e88ea68a0644","user":{"_id":"6415947858a690df103af49f","avatarUrl":"/avatars/38aec23b869833bceb25b9250809b419.svg","isPro":false,"fullname":"lma","user":"lin5547","type":"user"},"name":"Mingan Lin","status":"claimed_verified","statusLastChangedAt":"2024-10-22T08:01:00.377Z","hidden":false},{"_id":"671712096914e88ea68a0645","user":{"_id":"641c45c921964f8f6d451d16","avatarUrl":"/avatars/da06cc603f8f9ee46ddb7dc72aae5bec.svg","isPro":false,"fullname":"FanYang","user":"fairyang","type":"user"},"name":"Fan Yang","status":"claimed_verified","statusLastChangedAt":"2025-09-03T08:33:40.146Z","hidden":false},{"_id":"671712096914e88ea68a0646","user":{"_id":"64ced7c01720c7a483d0862f","avatarUrl":"/avatars/1fae685b7226a0a1c95b2d4993f2ab60.svg","isPro":false,"fullname":"shenyanjun","user":"zilchshen","type":"user"},"name":"Yanjun Shen","status":"admin_assigned","statusLastChangedAt":"2024-10-22T08:34:25.552Z","hidden":false},{"_id":"671712096914e88ea68a0647","user":{"_id":"6436bb0dd58a5ea528c55acb","avatarUrl":"/avatars/df17b66780e14e07bbe4625f068a94ad.svg","isPro":false,"fullname":"Alvin Sun","user":"AlvinSunYooo","type":"user"},"name":"Haoze Sun","status":"claimed_verified","statusLastChangedAt":"2025-01-23T15:05:35.969Z","hidden":false},{"_id":"671712096914e88ea68a0648","user":{"_id":"64be4c97ef8c0e42bf448469","avatarUrl":"/avatars/a2a45b5f17d3e27c59547312bcf7bb52.svg","isPro":false,"fullname":"Tianpeng Li","user":"TJU-Tianpengli","type":"user"},"name":"Tianpeng Li","status":"admin_assigned","statusLastChangedAt":"2024-10-22T08:33:45.235Z","hidden":false},{"_id":"671712096914e88ea68a0649","name":"Tao Zhang","hidden":false},{"_id":"671712096914e88ea68a064a","name":"Chenzheng Zhu","hidden":false},{"_id":"671712096914e88ea68a064b","name":"Tao Zhang","hidden":false},{"_id":"671712096914e88ea68a064c","name":"Miao Zheng","hidden":false},{"_id":"671712096914e88ea68a064d","name":"Xu Li","hidden":false},{"_id":"671712096914e88ea68a064e","user":{"_id":"65c2515544b6e2c37fd77f4d","avatarUrl":"/avatars/238d6ed99c6eeb9c8e04c60b2176424d.svg","isPro":false,"fullname":"Yijie Zhou","user":"YijieZhou","type":"user"},"name":"Yijie Zhou","status":"admin_assigned","statusLastChangedAt":"2024-10-22T08:35:17.341Z","hidden":false},{"_id":"671712096914e88ea68a064f","user":{"_id":"66254042ea4f4ed066a77a1e","avatarUrl":"/avatars/c749b77417431bb364f6fa2189eabaa2.svg","isPro":false,"fullname":"Mingyang Chen","user":"anselcmy","type":"user"},"name":"Mingyang Chen","status":"claimed_verified","statusLastChangedAt":"2025-09-03T08:33:41.792Z","hidden":false},{"_id":"671712096914e88ea68a0650","name":"Yanzhao Qin","hidden":false},{"_id":"671712096914e88ea68a0651","name":"Youquan Li","hidden":false},{"_id":"671712096914e88ea68a0652","name":"Hao Liang","hidden":false},{"_id":"671712096914e88ea68a0653","user":{"_id":"6464dd5234acce85aea186c7","avatarUrl":"/avatars/3428029b0ae5f12885092c7aea588065.svg","isPro":false,"fullname":"lifei","user":"lifei926926","type":"user"},"name":"Fei Li","status":"claimed_verified","statusLastChangedAt":"2026-01-12T14:17:09.582Z","hidden":false},{"_id":"671712096914e88ea68a0654","name":"Yadong Li","hidden":false},{"_id":"671712096914e88ea68a0655","name":"Mang Wang","hidden":false},{"_id":"671712096914e88ea68a0656","user":{"_id":"668d2ff4271bd45dab6a8e71","avatarUrl":"/avatars/4e198c35a9f09bbc6551c34148aaf560.svg","isPro":false,"fullname":"guosheng dong","user":"dongguosheng","type":"user"},"name":"Guosheng Dong","status":"admin_assigned","statusLastChangedAt":"2024-10-22T08:33:18.413Z","hidden":false},{"_id":"671712096914e88ea68a0657","name":"Kun Fang","hidden":false},{"_id":"671712096914e88ea68a0658","user":{"_id":"66042414ded78d7454b9746e","avatarUrl":"/avatars/828feab7015b527b5ac5c9238fa3c7e0.svg","isPro":false,"fullname":"jianhua Xu","user":"ArthurXu2020","type":"user"},"name":"Jianhua Xu","status":"admin_assigned","statusLastChangedAt":"2024-10-22T08:33:25.164Z","hidden":false},{"_id":"671712096914e88ea68a0659","name":"Bin Cui","hidden":false},{"_id":"671712096914e88ea68a065a","name":"Wentao Zhang","hidden":false},{"_id":"671712096914e88ea68a065b","user":{"_id":"668d4e50ed63008dfaa78304","avatarUrl":"/avatars/80854a3c6b4b7c70cd46694d4cf7296a.svg","isPro":false,"fullname":"Zenan Zhou","user":"Zenan11","type":"user"},"name":"Zenan Zhou","status":"admin_assigned","statusLastChangedAt":"2024-10-22T08:35:33.015Z","hidden":false},{"_id":"671712096914e88ea68a065c","user":{"_id":"6501587887b370a56ad2608e","avatarUrl":"/avatars/6779baaa8ed9032de55a2f78e1f52e20.svg","isPro":false,"fullname":"Wei-Peng Chen","user":"whenfra","type":"user"},"name":"Weipeng Chen","status":"admin_assigned","statusLastChangedAt":"2024-10-22T08:35:26.687Z","hidden":false}],"publishedAt":"2024-10-19T02:07:33.000Z","submittedOnDailyAt":"2024-10-22T01:17:50.681Z","title":"Baichuan Alignment Technical Report","submittedOnDailyBy":{"_id":"6415947858a690df103af49f","avatarUrl":"/avatars/38aec23b869833bceb25b9250809b419.svg","isPro":false,"fullname":"lma","user":"lin5547","type":"user"},"summary":"We introduce Baichuan Alignment, a detailed analysis of the alignment\ntechniques employed in the Baichuan series of models. This represents the\nindustry's first comprehensive account of alignment methodologies, offering\nvaluable insights for advancing AI research. We investigate the critical\ncomponents that enhance model performance during the alignment process,\nincluding optimization methods, data strategies, capability enhancements, and\nevaluation processes. The process spans three key stages: Prompt Augmentation\nSystem (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The\nproblems encountered, the solutions applied, and the improvements made are\nthoroughly recorded.\n Through comparisons across well-established benchmarks, we highlight the\ntechnological advancements enabled by Baichuan Alignment. Baichuan-Instruct is\nan internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct\nversions of the Qwen2-72B and Llama-3-70B base models, optimized through\nBaichuan Alignment. Baichuan-Instruct demonstrates significant improvements in\ncore capabilities, with user experience gains ranging from 17% to 28%, and\nperforms exceptionally well on specialized benchmarks. In open-source benchmark\nevaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently\noutperform their respective official instruct versions across nearly all\ndatasets. This report aims to clarify the key technologies behind the alignment\nprocess, fostering a deeper understanding within the community.\nLlama3-PBM-Nova-70B model is available at\nhttps://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.","upvotes":51,"discussionId":"6717120a6914e88ea68a06b7","ai_summary":"Baichuan Alignment provides comprehensive insights into alignment methodologies used in Baichuan models, detailing improvements through Prompt Augmentation System, Supervised Fine-Tuning, and Preference Alignment across various benchmarks.","ai_keywords":["Prompt Augmentation System","Supervised Fine-Tuning","Preference Alignment","Baichuan-Instruct","Qwen2-Nova-72B","Llama3-PBM-Nova-70B","user experience gains","specialized benchmarks","open-source benchmarks"]},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"6415947858a690df103af49f","avatarUrl":"/avatars/38aec23b869833bceb25b9250809b419.svg","isPro":false,"fullname":"lma","user":"lin5547","type":"user"},{"_id":"668d4e50ed63008dfaa78304","avatarUrl":"/avatars/80854a3c6b4b7c70cd46694d4cf7296a.svg","isPro":false,"fullname":"Zenan Zhou","user":"Zenan11","type":"user"},{"_id":"6436bb0dd58a5ea528c55acb","avatarUrl":"/avatars/df17b66780e14e07bbe4625f068a94ad.svg","isPro":false,"fullname":"Alvin Sun","user":"AlvinSunYooo","type":"user"},{"_id":"646c3ced3e2a7b06594bbaa4","avatarUrl":"/avatars/6e2d0e2f35e159a7832919a454583ab1.svg","isPro":false,"fullname":"李天鹏","user":"yuanshuai","type":"user"},{"_id":"6399d6e06a1acf37cc19d29f","avatarUrl":"/avatars/4bf26e08fd8413b85fa56c2341fc710a.svg","isPro":false,"fullname":"shen","user":"yanjunhhh","type":"user"},{"_id":"6600e69fd157381f16eb53e4","avatarUrl":"/avatars/d924339133c1d2598be83e27d4f92ead.svg","isPro":false,"fullname":"zhangtao.tanh","user":"zhangtao00001","type":"user"},{"_id":"658670184f349f95cf7d2252","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/658670184f349f95cf7d2252/MfYwxDS1w2kIvav2GvE_U.jpeg","isPro":false,"fullname":"Jie","user":"Jayok6","type":"user"},{"_id":"631185fa07a768279029be17","avatarUrl":"/avatars/d1dbfe21fc4431deff4f4424d55d4ecd.svg","isPro":false,"fullname":"ZHANG Tao","user":"zhangtaochn","type":"user"},{"_id":"66254042ea4f4ed066a77a1e","avatarUrl":"/avatars/c749b77417431bb364f6fa2189eabaa2.svg","isPro":false,"fullname":"Mingyang Chen","user":"anselcmy","type":"user"},{"_id":"64ba096e760936217a3ad2e2","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64ba096e760936217a3ad2e2/aNQK83Jg5PsBkY0UDg-RA.jpeg","isPro":false,"fullname":"Linzheng Chai","user":"Challenging666","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"64f720b3fcedae59eec68f3a","avatarUrl":"/avatars/c773041eeed48d39241b7900e633ebd0.svg","isPro":false,"fullname":"Jialiang Cheng","user":"Julius-L","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
Baichuan Alignment provides comprehensive insights into alignment methodologies used in Baichuan models, detailing improvements through Prompt Augmentation System, Supervised Fine-Tuning, and Preference Alignment across various benchmarks.
AI-generated summary
We introduce Baichuan Alignment, a detailed analysis of the alignment
techniques employed in the Baichuan series of models. This represents the
industry's first comprehensive account of alignment methodologies, offering
valuable insights for advancing AI research. We investigate the critical
components that enhance model performance during the alignment process,
including optimization methods, data strategies, capability enhancements, and
evaluation processes. The process spans three key stages: Prompt Augmentation
System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The
problems encountered, the solutions applied, and the improvements made are
thoroughly recorded.
Through comparisons across well-established benchmarks, we highlight the
technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is
an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct
versions of the Qwen2-72B and Llama-3-70B base models, optimized through
Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in
core capabilities, with user experience gains ranging from 17% to 28%, and
performs exceptionally well on specialized benchmarks. In open-source benchmark
evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently
outperform their respective official instruct versions across nearly all
datasets. This report aims to clarify the key technologies behind the alignment
process, fostering a deeper understanding within the community.
Llama3-PBM-Nova-70B model is available at
https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.