Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - TรLU 3: Pushing Frontiers in Open Language Model Post-Training
https://github.com/allenai/open-instruct\n","updatedAt":"2024-11-25T06:10:46.655Z","author":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","fullname":"AK","name":"akhaliq","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":9178,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.5899043083190918},"editors":["akhaliq"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg"],"reactions":[{"reaction":"๐","users":["dashfunnydashdash","Azily","yizhongw"],"count":3}],"isReport":false}},{"id":"67452598334ae6264ba23d73","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false},"createdAt":"2024-11-26T01:34:16.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\nThe following papers were recommended by the Semantic Scholar API \n\n* [A Post-Training Enhanced Optimization Approach for Small Language Models](https://huggingface.co/papers/2411.02939) (2024)\n* [CodeLutra: Boosting LLM Code Generation via Preference-Guided Refinement](https://huggingface.co/papers/2411.05199) (2024)\n* [NeKo: Toward Post Recognition Generative Correction Large Language Models with Task-Oriented Experts](https://huggingface.co/papers/2411.05945) (2024)\n* [SAG: Style-Aligned Article Generation via Model Collaboration](https://huggingface.co/papers/2410.03137) (2024)\n* [How to Train Long-Context Language Models (Effectively)](https://huggingface.co/papers/2410.02660) (2024)\n* [SFTMix: Elevating Language Model Instruction Tuning with Mixup Recipe](https://huggingface.co/papers/2410.05248) (2024)\n* [Adapting Multilingual LLMs to Low-Resource Languages using Continued Pre-training and Synthetic Corpus](https://huggingface.co/papers/2410.14815) (2024)\n\n\n Please give a thumbs up to this comment if you found it helpful!\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`","html":"
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
\n
The following papers were recommended by the Semantic Scholar API
\n","updatedAt":"2025-11-10T01:56:23.171Z","author":{"_id":"6910f5aea2096c8ab832346c","avatarUrl":"/avatars/5aba1b15a3a102d5d705e45b9f647160.svg","fullname":"Michael Cassell","name":"MichaelCassell","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.40726393461227417},"editors":["MichaelCassell"],"editorAvatarUrls":["/avatars/5aba1b15a3a102d5d705e45b9f647160.svg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2411.15124","authors":[{"_id":"674414c8d3ad4510c1a26134","user":{"_id":"628e5f90a9a3c754c1f7c88f","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/628e5f90a9a3c754c1f7c88f/iWqMY_l6dalrgRaJZWbK3.png","isPro":false,"fullname":"Nathan Lambert","user":"natolambert","type":"user"},"name":"Nathan Lambert","status":"admin_assigned","statusLastChangedAt":"2024-11-25T20:52:52.869Z","hidden":false},{"_id":"674414c8d3ad4510c1a26135","user":{"_id":"63f51f6cb51da4d61da72937","avatarUrl":"/avatars/6023ecaafb28b7599f59816381d58bd0.svg","isPro":false,"fullname":"Jacob Morrison","user":"jacobmorrison","type":"user"},"name":"Jacob Morrison","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:40:52.602Z","hidden":false},{"_id":"674414c8d3ad4510c1a26136","user":{"_id":"6556cff80e7a7067a934445f","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6556cff80e7a7067a934445f/PoT7qQ6tVqLGGrYvGBbr8.jpeg","isPro":false,"fullname":"Valentina Pyatkin","user":"valpy","type":"user"},"name":"Valentina Pyatkin","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:40:58.240Z","hidden":false},{"_id":"674414c8d3ad4510c1a26137","user":{"_id":"62bfc80b54db40ca617ce53a","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/62bfc80b54db40ca617ce53a/IZxafMqoYJNHwTuFt8AqF.png","isPro":false,"fullname":"Shengyi Costa Huang","user":"vwxyzjn","type":"user"},"name":"Shengyi Huang","status":"claimed_verified","statusLastChangedAt":"2025-01-05T23:03:13.686Z","hidden":false},{"_id":"674414c8d3ad4510c1a26138","user":{"_id":"62608fc2ffe8827cb1d89f9f","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1654027835241-62608fc2ffe8827cb1d89f9f.png","isPro":false,"fullname":"Hamish Ivison","user":"hamishivi","type":"user"},"name":"Hamish Ivison","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:41:19.991Z","hidden":false},{"_id":"674414c8d3ad4510c1a26139","user":{"_id":"65282b8d578679aac7888aec","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/65282b8d578679aac7888aec/dibBkhH-z1c70mJZZxJ7u.jpeg","isPro":false,"fullname":"Faeze Brahman","user":"faezeb","type":"user"},"name":"Faeze Brahman","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:41:25.755Z","hidden":false},{"_id":"674414c8d3ad4510c1a2613a","user":{"_id":"634e20a0c1ce28f1de920cc4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1666064515342-noauth.jpeg","isPro":true,"fullname":"Lj V. Miranda","user":"ljvmiranda921","type":"user"},"name":"Lester James V. Miranda","status":"claimed_verified","statusLastChangedAt":"2024-11-26T21:21:20.277Z","hidden":false},{"_id":"674414c8d3ad4510c1a2613b","name":"Alisa Liu","hidden":false},{"_id":"674414c8d3ad4510c1a2613c","user":{"_id":"625888c2c964680d85d70bff","avatarUrl":"/avatars/2ba91e452c5ea577ec9f1f71abc2fa49.svg","isPro":false,"fullname":"Nouha Dziri","user":"nouhadziri","type":"user"},"name":"Nouha Dziri","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:41:51.152Z","hidden":false},{"_id":"674414c8d3ad4510c1a2613d","name":"Shane Lyu","hidden":false},{"_id":"674414c8d3ad4510c1a2613e","user":{"_id":"62a8b91c1277a49db0c5c080","avatarUrl":"/avatars/9cf834a02b67af862659c9b9d4367a52.svg","isPro":false,"fullname":"Yuling Gu","user":"SaveBertAndGpt","type":"user"},"name":"Yuling Gu","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:42:05.890Z","hidden":false},{"_id":"674414c8d3ad4510c1a2613f","user":{"_id":"63fee2851193ba2c22a1b687","avatarUrl":"/avatars/d2357740e01dafb216db0ed2b74a8100.svg","isPro":false,"fullname":"Saumya Malik","user":"saumyamalik","type":"user"},"name":"Saumya Malik","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:42:11.222Z","hidden":false},{"_id":"674414c8d3ad4510c1a26140","user":{"_id":"646d699ed720ccd8cae5c011","avatarUrl":"/avatars/2e5ccee268081b7ba663eb6932552345.svg","isPro":false,"fullname":"Victoria Graf","user":"VGraf","type":"user"},"name":"Victoria Graf","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:42:17.089Z","hidden":false},{"_id":"674414c8d3ad4510c1a26141","user":{"_id":"65c157eaf9957360824b0d87","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/65c157eaf9957360824b0d87/c1NWTKsFLATJLR7W6Kmqz.jpeg","isPro":false,"fullname":"jena hwang","user":"jenah","type":"user"},"name":"Jena D. Hwang","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:42:25.494Z","hidden":false},{"_id":"674414c8d3ad4510c1a26142","name":"Jiangjiang Yang","hidden":false},{"_id":"674414c8d3ad4510c1a26143","user":{"_id":"635049104e753c9940fefd71","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/635049104e753c9940fefd71/HgR43XIFw3dneY5ufrAE8.jpeg","isPro":false,"fullname":"Ronan Le Bras","user":"ronanlb","type":"user"},"name":"Ronan Le Bras","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:42:39.456Z","hidden":false},{"_id":"674414c8d3ad4510c1a26144","user":{"_id":"609b1aeff7c1303cfd1760f3","avatarUrl":"/avatars/3cb448514885656466886d7c84e12af1.svg","isPro":false,"fullname":"Oyvind Tafjord","user":"OyvindTafjord","type":"user"},"name":"Oyvind Tafjord","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:42:44.624Z","hidden":false},{"_id":"674414c8d3ad4510c1a26145","user":{"_id":"62bf74ca34afe69e1a1f98e3","avatarUrl":"/avatars/75aa4e89ea19a971300a57a208c686a6.svg","isPro":false,"fullname":"Chris Wilhelm","user":"cmwilhelm","type":"user"},"name":"Chris Wilhelm","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:42:51.192Z","hidden":false},{"_id":"674414c8d3ad4510c1a26146","user":{"_id":"5f04d8c45d08220171a0ad32","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5f04d8c45d08220171a0ad32/B0szblazqtHQql_-pWOHW.jpeg","isPro":true,"fullname":"Luca Soldaini","user":"soldni","type":"user"},"name":"Luca Soldaini","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:42:58.621Z","hidden":false},{"_id":"674414c8d3ad4510c1a26147","name":"Noah A. Smith","hidden":false},{"_id":"674414c8d3ad4510c1a26148","user":{"_id":"6269be67d1ac0cde592aba29","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6269be67d1ac0cde592aba29/EP3zZbD7-jWK9ITvHGbnZ.jpeg","isPro":false,"fullname":"Yizhong Wang","user":"yizhongw","type":"user"},"name":"Yizhong Wang","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:43:10.147Z","hidden":false},{"_id":"674414c8d3ad4510c1a26149","user":{"_id":"6408fcc93461c51cf735a61e","avatarUrl":"/avatars/619f3653911d111f046a5a6c30fc8319.svg","isPro":false,"fullname":"Pradeep Dasigi","user":"pradeepd","type":"user"},"name":"Pradeep Dasigi","status":"admin_assigned","statusLastChangedAt":"2024-11-25T21:43:15.425Z","hidden":false},{"_id":"674414c8d3ad4510c1a2614a","name":"Hannaneh Hajishirzi","hidden":false}],"publishedAt":"2024-11-22T18:44:04.000Z","submittedOnDailyAt":"2024-11-25T03:40:46.649Z","title":"TรLU 3: Pushing Frontiers in Open Language Model Post-Training","submittedOnDailyBy":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","isPro":false,"fullname":"AK","user":"akhaliq","type":"user"},"summary":"Language model post-training is applied to refine behaviors and unlock new\nskills across a wide range of recent language models, but open recipes for\napplying these techniques lag behind proprietary ones. The underlying training\ndata and recipes for post-training are simultaneously the most important pieces\nof the puzzle and the portion with the least transparency. To bridge this gap,\nwe introduce T\\\"ULU 3, a family of fully-open state-of-the-art post-trained\nmodels, alongside its data, code, and training recipes, serving as a\ncomprehensive guide for modern post-training techniques. T\\\"ULU 3, which builds\non Llama 3.1 base models, achieves results surpassing the instruct versions of\nLlama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and\nClaude 3.5-Haiku. The training algorithms for our models include supervised\nfinetuning (SFT), Direct Preference Optimization (DPO), and a novel method we\ncall Reinforcement Learning with Verifiable Rewards (RLVR). With T\\\"ULU 3, we\nintroduce a multi-task evaluation scheme for post-training recipes with\ndevelopment and unseen evaluations, standard benchmark implementations, and\nsubstantial decontamination of existing open datasets on said benchmarks. We\nconclude with analysis and discussion of training methods that did not reliably\nimprove performance.\n In addition to the T\\\"ULU 3 model weights and demo, we release the complete\nrecipe -- including datasets for diverse core skills, a robust toolkit for data\ncuration and evaluation, the training code and infrastructure, and, most\nimportantly, a detailed report for reproducing and further adapting the T\\\"ULU\n3 approach to more domains.","upvotes":67,"discussionId":"674414c9d3ad4510c1a26196","ai_summary":"T\\\"ULU 3, an open-source family of post-trained language models, introduces transparent training data, recipes, and advanced techniques to match or surpass proprietary models in performance.","ai_keywords":["supervised finetuning (SFT)","Direct Preference Optimization (DPO)","Reinforcement Learning with Verifiable Rewards (RLVR)","multi-task evaluation scheme","standard benchmark implementations","data decontamination"]},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"5e56829137cb5b49818287ea","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5e56829137cb5b49818287ea/8HYzJeRc4b9Wu7BfJwibS.png","isPro":false,"fullname":"Lee Junbum","user":"beomi","type":"user"},{"_id":"646713d2e7a6a374fd160bf2","avatarUrl":"/avatars/33a14a2746343db090d0c804a8c43e27.svg","isPro":false,"fullname":"Zhikai Lei","user":"Kausal77","type":"user"},{"_id":"6486bb3d4c025cf3c41e7767","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6486bb3d4c025cf3c41e7767/1I6yYhv06rHX1_1iIOdjP.png","isPro":false,"fullname":"Quentin Tardif","user":"ntnq","type":"user"},{"_id":"646350107e9025b09bd62bab","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/646350107e9025b09bd62bab/Oou_8-WG72ZbkatdQ1-q6.jpeg","isPro":false,"fullname":"momo","user":"wzc991222","type":"user"},{"_id":"609653c1146ef3bfe2fc7392","avatarUrl":"/avatars/1639b6552a419209ae67b6562183bc2f.svg","isPro":false,"fullname":"Inui","user":"Norm","type":"user"},{"_id":"636f533c1ca0ea5107ed171d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/636f533c1ca0ea5107ed171d/jLwsrcPtUiHj8WhcE0Y67.jpeg","isPro":false,"fullname":"Bhimraj Yadav","user":"bhimrazy","type":"user"},{"_id":"652965773a416e1f2173443b","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/652965773a416e1f2173443b/y9MB8YgHzbwCXAc4EI9T3.jpeg","isPro":true,"fullname":"Yuhao Dong","user":"THUdyh","type":"user"},{"_id":"646484cfb90150b2706df03b","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/646484cfb90150b2706df03b/8ocSbXBSbrruhlhcxwzEt.png","isPro":true,"fullname":"Jaeyoon Jung","user":"lastdefiance20","type":"user"},{"_id":"644738590dde469d24f0c1fa","avatarUrl":"/avatars/6ad7f8a9b461fb15fb718c6135cfe52f.svg","isPro":true,"fullname":"aw jeez","user":"yikesawjeez","type":"user"},{"_id":"63c00bb14ed1b8fd6886ac22","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63c00bb14ed1b8fd6886ac22/UnVltghRz46ar-cCCMgnW.jpeg","isPro":false,"fullname":"Matricardi Fabio","user":"FM-1976","type":"user"},{"_id":"66470e227d73a39a342866e4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/mDB2nCMAgcX8bQ1u1p7P4.png","isPro":false,"fullname":"Roman Plaud","user":"lecraquito","type":"user"},{"_id":"64a84de2eb47b3552285ef74","avatarUrl":"/avatars/114e0cc393d0aea9680f3af6d84d6f46.svg","isPro":false,"fullname":"Eni Grand","user":"Enigrand","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":1}">
T\"ULU 3, an open-source family of post-trained language models, introduces transparent training data, recipes, and advanced techniques to match or surpass proprietary models in performance.
AI-generated summary
Language model post-training is applied to refine behaviors and unlock new
skills across a wide range of recent language models, but open recipes for
applying these techniques lag behind proprietary ones. The underlying training
data and recipes for post-training are simultaneously the most important pieces
of the puzzle and the portion with the least transparency. To bridge this gap,
we introduce T\"ULU 3, a family of fully-open state-of-the-art post-trained
models, alongside its data, code, and training recipes, serving as a
comprehensive guide for modern post-training techniques. T\"ULU 3, which builds
on Llama 3.1 base models, achieves results surpassing the instruct versions of
Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and
Claude 3.5-Haiku. The training algorithms for our models include supervised
finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we
call Reinforcement Learning with Verifiable Rewards (RLVR). With T\"ULU 3, we
introduce a multi-task evaluation scheme for post-training recipes with
development and unseen evaluations, standard benchmark implementations, and
substantial decontamination of existing open datasets on said benchmarks. We
conclude with analysis and discussion of training methods that did not reliably
improve performance.
In addition to the T\"ULU 3 model weights and demo, we release the complete
recipe -- including datasets for diverse core skills, a robust toolkit for data
curation and evaluation, the training code and infrastructure, and, most
importantly, a detailed report for reproducing and further adapting the T\"ULU
3 approach to more domains.