Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - Babel: Open Multilingual Large Language Models Serving Over 90% of
Global Speakers
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2025-03-07T01:34:09.480Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7221285104751587},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2503.00865","authors":[{"_id":"67c666245e2443d7d5e9b76a","user":{"_id":"64802face9ff472e30dc1ceb","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64802face9ff472e30dc1ceb/bcwTlgpaUrU7m2RMB5zCc.png","isPro":true,"fullname":"Yiran Zhao","user":"Yiran0924","type":"user"},"name":"Yiran Zhao","status":"claimed_verified","statusLastChangedAt":"2025-03-04T08:51:21.231Z","hidden":false},{"_id":"67c666245e2443d7d5e9b76b","user":{"_id":"61657b0b20606e5e73f611cc","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/61657b0b20606e5e73f611cc/6ZPne2GYlWkxrx35ND1P8.png","isPro":false,"fullname":"CHAOQUN LIU","user":"lukecq","type":"user"},"name":"Chaoqun Liu","status":"claimed_verified","statusLastChangedAt":"2025-03-06T09:27:33.956Z","hidden":false},{"_id":"67c666245e2443d7d5e9b76c","user":{"_id":"6046db56de4e62b756b5a11f","avatarUrl":"/avatars/702b0eb530db72d9342a913f71ba5bf9.svg","isPro":false,"fullname":"Yue Deng","user":"spencer97","type":"user"},"name":"Yue Deng","status":"admin_assigned","statusLastChangedAt":"2025-10-08T09:36:03.655Z","hidden":false},{"_id":"67c666245e2443d7d5e9b76d","user":{"_id":"671609f7664f44a151f1f0e8","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/fEQLuH1kdW5Pd9Y_J64hN.png","isPro":false,"fullname":"jiahao ying","user":"jhying","type":"user"},"name":"Jiahao Ying","status":"admin_assigned","statusLastChangedAt":"2025-03-06T09:35:39.926Z","hidden":false},{"_id":"67c666245e2443d7d5e9b76e","user":{"_id":"6539c87ba318a98bf0d15dd8","avatarUrl":"/avatars/beb9ba6eeacb61addc5897836bd59f55.svg","isPro":false,"fullname":"Mahani Aljunied","user":"maljunied","type":"user"},"name":"Mahani Aljunied","status":"admin_assigned","statusLastChangedAt":"2025-03-06T09:35:33.285Z","hidden":false},{"_id":"67c666245e2443d7d5e9b76f","name":"Zhaodonghui Li","hidden":false},{"_id":"67c666245e2443d7d5e9b770","user":{"_id":"6454685a548f22be598414c4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/eMjMWKJ-AouF7eY1-RzGF.jpeg","isPro":false,"fullname":"Lidong Bing","user":"LidongBing","type":"user"},"name":"Lidong Bing","status":"admin_assigned","statusLastChangedAt":"2025-03-06T09:35:19.611Z","hidden":false},{"_id":"67c666245e2443d7d5e9b771","user":{"_id":"604f67ef0fe8ff3ec13d71ef","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/604f67ef0fe8ff3ec13d71ef/KhUwWvZ3OJ9nEee3B-SXO.png","isPro":false,"fullname":"Hou Pong (Ken) Chan","user":"kenchan0226","type":"user"},"name":"Hou Pong Chan","status":"admin_assigned","statusLastChangedAt":"2025-03-06T09:35:50.272Z","hidden":false},{"_id":"67c666245e2443d7d5e9b772","user":{"_id":"642eecbf9b2484d7d8526781","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/642eecbf9b2484d7d8526781/4IvGbd66s49Wx5pZyZGHA.png","isPro":false,"fullname":"Yu Rong","user":"Swrooy","type":"user"},"name":"Yu Rong","status":"claimed_verified","statusLastChangedAt":"2025-06-10T09:30:55.214Z","hidden":false},{"_id":"67c666245e2443d7d5e9b773","name":"Deli Zhao","hidden":false},{"_id":"67c666245e2443d7d5e9b774","user":{"_id":"60dff6ae19a362a8c27862aa","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/60dff6ae19a362a8c27862aa/LIYzLB3cdPh-B3XIBgBCC.jpeg","isPro":false,"fullname":"Wenxuan Zhang","user":"isakzhang","type":"user"},"name":"Wenxuan Zhang","status":"claimed_verified","statusLastChangedAt":"2025-03-06T09:27:36.769Z","hidden":false}],"publishedAt":"2025-03-02T11:53:55.000Z","submittedOnDailyAt":"2025-03-06T00:19:03.700Z","title":"Babel: Open Multilingual Large Language Models Serving Over 90% of\n Global Speakers","submittedOnDailyBy":{"_id":"64802face9ff472e30dc1ceb","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64802face9ff472e30dc1ceb/bcwTlgpaUrU7m2RMB5zCc.png","isPro":true,"fullname":"Yiran Zhao","user":"Yiran0924","type":"user"},"summary":"Large language models (LLMs) have revolutionized natural language processing\n(NLP), yet open-source multilingual LLMs remain scarce, with existing models\noften limited in language coverage. Such models typically prioritize\nwell-resourced languages, while widely spoken but under-resourced languages are\noften overlooked. To address this disparity, we introduce Babel, an\nopen multilingual LLM that covers the top 25 languages by number of speakers,\nsupports over 90% of the global population, and includes many languages\nneglected by other open multilingual LLMs. Unlike traditional continue\npretraining approaches, Babel expands its parameter count through a layer\nextension technique that elevates Babel's performance ceiling. We introduce two\nvariants: Babel-9B, designed for efficient inference and\nfine-tuning, and Babel-83B, which sets a new standard for open\nmultilingual LLMs. Extensive evaluations on multilingual tasks demonstrate its\nsuperior performance compared to open LLMs of comparable size. In addition,\nusing open-source supervised fine-tuning datasets, Babel achieves remarkable\nperformance, with Babel-9B-Chat leading among 10B-sized LLMs and Babel-83B-Chat\nsetting a new standard for multilingual tasks, reaching the same level of\ncommercial models.","upvotes":64,"discussionId":"67c666255e2443d7d5e9b7b3","projectPage":"https://babel-llm.github.io/babel-llm/","githubRepo":"https://github.com/babel-llm/babel-llm","githubRepoAddedBy":"user","ai_summary":"Babel is an open multilingual LLM that expands its parameter count through layer extension, covering numerous languages and achieving superior performance in multilingual tasks compared to other open LLMs.","ai_keywords":["LLMs","natural language processing","multilingual LLMs","layer extension","Babel-9B","Babel-83B","inference","fine-tuning","supervised fine-tuning","multilingual tasks"],"githubStars":213},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"604f67ef0fe8ff3ec13d71ef","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/604f67ef0fe8ff3ec13d71ef/KhUwWvZ3OJ9nEee3B-SXO.png","isPro":false,"fullname":"Hou Pong (Ken) Chan","user":"kenchan0226","type":"user"},{"_id":"64802face9ff472e30dc1ceb","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64802face9ff472e30dc1ceb/bcwTlgpaUrU7m2RMB5zCc.png","isPro":true,"fullname":"Yiran Zhao","user":"Yiran0924","type":"user"},{"_id":"6046db56de4e62b756b5a11f","avatarUrl":"/avatars/702b0eb530db72d9342a913f71ba5bf9.svg","isPro":false,"fullname":"Yue Deng","user":"spencer97","type":"user"},{"_id":"65363393cb8a5a17e79ce436","avatarUrl":"/avatars/48863002bac2447282585b3f72f890c0.svg","isPro":false,"fullname":"Rengan","user":"DrGan","type":"user"},{"_id":"65e43b57680724cc9a740b2d","avatarUrl":"/avatars/0134f1b75e462863aed71b692cbaefad.svg","isPro":false,"fullname":"Zhang Yang","user":"cosmicthrillseeking","type":"user"},{"_id":"60dff6ae19a362a8c27862aa","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/60dff6ae19a362a8c27862aa/LIYzLB3cdPh-B3XIBgBCC.jpeg","isPro":false,"fullname":"Wenxuan Zhang","user":"isakzhang","type":"user"},{"_id":"6362a77dd3be91534c2e9213","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6362a77dd3be91534c2e9213/3uUM3B1m2CFMukbkA0yDv.png","isPro":true,"fullname":"Xingxuan Li","user":"veggiebird","type":"user"},{"_id":"64eb7b30d848efd8a6785758","avatarUrl":"/avatars/172d15a9d488a89282087a99f371ef04.svg","isPro":false,"fullname":"ying jiahao","user":"gjg145","type":"user"},{"_id":"61657b0b20606e5e73f611cc","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/61657b0b20606e5e73f611cc/6ZPne2GYlWkxrx35ND1P8.png","isPro":false,"fullname":"CHAOQUN LIU","user":"lukecq","type":"user"},{"_id":"67c91080d8fafcd81b97707c","avatarUrl":"/avatars/31716370a5a6475601fd9ff55462fe3e.svg","isPro":false,"fullname":"Qi Yining","user":"xx777","type":"user"},{"_id":"662620578c67281c9eb17f7b","avatarUrl":"/avatars/0e9c26d2234a9f1898a380f183b1645a.svg","isPro":false,"fullname":"Li Zhaodonghui","user":"LZ12DH","type":"user"},{"_id":"66f612b934b8ac9ffa44f084","avatarUrl":"/avatars/6836c122e19c66c90f1673f28b30d7f0.svg","isPro":false,"fullname":"Tang","user":"tommysally","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":1}">
Babel is an open multilingual LLM that expands its parameter count through layer extension, covering numerous languages and achieving superior performance in multilingual tasks compared to other open LLMs.
AI-generated summary
Large language models (LLMs) have revolutionized natural language processing
(NLP), yet open-source multilingual LLMs remain scarce, with existing models
often limited in language coverage. Such models typically prioritize
well-resourced languages, while widely spoken but under-resourced languages are
often overlooked. To address this disparity, we introduce Babel, an
open multilingual LLM that covers the top 25 languages by number of speakers,
supports over 90% of the global population, and includes many languages
neglected by other open multilingual LLMs. Unlike traditional continue
pretraining approaches, Babel expands its parameter count through a layer
extension technique that elevates Babel's performance ceiling. We introduce two
variants: Babel-9B, designed for efficient inference and
fine-tuning, and Babel-83B, which sets a new standard for open
multilingual LLMs. Extensive evaluations on multilingual tasks demonstrate its
superior performance compared to open LLMs of comparable size. In addition,
using open-source supervised fine-tuning datasets, Babel achieves remarkable
performance, with Babel-9B-Chat leading among 10B-sized LLMs and Babel-83B-Chat
setting a new standard for multilingual tasks, reaching the same level of
commercial models.
š Key Highlights: 1ļøā£ Convering 90% populationāsupporting top 25 languages, prioritizing widely spoken but previously underexplored languages in open multilingual models.
2ļøā£ Innovative architectureāUnlike traditional continued pretraining approaches, Babel expands its parameter count through model extension, raising its performance ceiling.
3ļøā£ Two powerful variants š”Babel-9BāDesigned for efficient inference and fine-tuning. š”Babel-83BāA new benchmark for open multilingual LLMs.