Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - "Principal Components" Enable A New Language of Images
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2025-03-14T01:35:36.395Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.6914785504341125},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2503.08685","authors":[{"_id":"67d0f7032eaba9be7bf76e0e","user":{"_id":"63483629ac5172169929da0e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1665676793089-noauth.jpeg","isPro":false,"fullname":"Xin Wen","user":"xwen99","type":"user"},"name":"Xin Wen","status":"claimed_verified","statusLastChangedAt":"2025-03-12T08:39:00.455Z","hidden":false},{"_id":"67d0f7032eaba9be7bf76e0f","user":{"_id":"62dcd71075e9787ec5aa41ba","avatarUrl":"/avatars/f37ce036b76180ed0fa004f9c8c09363.svg","isPro":true,"fullname":"Bingchen Zhao","user":"tennant","type":"user"},"name":"Bingchen Zhao","status":"claimed_verified","statusLastChangedAt":"2025-03-12T08:38:56.945Z","hidden":false},{"_id":"67d0f7032eaba9be7bf76e10","name":"Ismail Elezi","hidden":false},{"_id":"67d0f7032eaba9be7bf76e11","name":"Jiankang Deng","hidden":false},{"_id":"67d0f7032eaba9be7bf76e12","user":{"_id":"6875266f9cd3191dfddc7071","avatarUrl":"/avatars/64c581910833b111e9a7bae5b8740229.svg","isPro":false,"fullname":"xiaojuan qi","user":"xjqi","type":"user"},"name":"Xiaojuan Qi","status":"claimed_verified","statusLastChangedAt":"2025-07-15T19:13:38.415Z","hidden":false}],"publishedAt":"2025-03-11T17:59:41.000Z","submittedOnDailyAt":"2025-03-12T01:23:22.901Z","title":"\"Principal Components\" Enable A New Language of Images","submittedOnDailyBy":{"_id":"63483629ac5172169929da0e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1665676793089-noauth.jpeg","isPro":false,"fullname":"Xin Wen","user":"xwen99","type":"user"},"summary":"We introduce a novel visual tokenization framework that embeds a provable\nPCA-like structure into the latent token space. While existing visual\ntokenizers primarily optimize for reconstruction fidelity, they often neglect\nthe structural properties of the latent space -- a critical factor for both\ninterpretability and downstream tasks. Our method generates a 1D causal token\nsequence for images, where each successive token contributes non-overlapping\ninformation with mathematically guaranteed decreasing explained variance,\nanalogous to principal component analysis. This structural constraint ensures\nthe tokenizer extracts the most salient visual features first, with each\nsubsequent token adding diminishing yet complementary information.\nAdditionally, we identified and resolved a semantic-spectrum coupling effect\nthat causes the unwanted entanglement of high-level semantic content and\nlow-level spectral details in the tokens by leveraging a diffusion decoder.\nExperiments demonstrate that our approach achieves state-of-the-art\nreconstruction performance and enables better interpretability to align with\nthe human vision system. Moreover, auto-regressive models trained on our token\nsequences achieve performance comparable to current state-of-the-art methods\nwhile requiring fewer tokens for training and inference.","upvotes":12,"discussionId":"67d0f7052eaba9be7bf76eac","projectPage":"https://visual-gen.github.io/semanticist/","githubRepo":"https://github.com/visual-gen/semanticist","githubRepoAddedBy":"user","ai_summary":"A novel visual tokenization framework enhances reconstruction performance and interpretability by embedding a PCA-like structure into the latent token space, resolving semantic-spectrum coupling with a diffusion decoder.","ai_keywords":["visual tokenization","PCA-like structure","latent token space","token sequence","principal component analysis","diffusion decoder","auto-regressive models"],"githubStars":79},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"63483629ac5172169929da0e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1665676793089-noauth.jpeg","isPro":false,"fullname":"Xin Wen","user":"xwen99","type":"user"},{"_id":"66f612b934b8ac9ffa44f084","avatarUrl":"/avatars/6836c122e19c66c90f1673f28b30d7f0.svg","isPro":false,"fullname":"Tang","user":"tommysally","type":"user"},{"_id":"648eb1eb59c4e5c87dc116e0","avatarUrl":"/avatars/c636cea39c2c0937f01398c94ead5dad.svg","isPro":false,"fullname":"fdsqefsgergd","user":"T-representer","type":"user"},{"_id":"63c5d43ae2804cb2407e4d43","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1673909278097-noauth.png","isPro":false,"fullname":"xziayro","user":"xziayro","type":"user"},{"_id":"61e52be53d6dbb1da842316a","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/61e52be53d6dbb1da842316a/gx0WGPcOCClXPymoKglc4.jpeg","isPro":false,"fullname":"Börje Karlsson","user":"tellarin","type":"user"},{"_id":"64738c198b7a55cfa91ebb00","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64738c198b7a55cfa91ebb00/qd_550SJq921zhA0l1aUY.jpeg","isPro":false,"fullname":"Ming Ryan","user":"yym68686","type":"user"},{"_id":"6270324ebecab9e2dcf245de","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6270324ebecab9e2dcf245de/cMbtWSasyNlYc9hvsEEzt.jpeg","isPro":false,"fullname":"Kye Gomez","user":"kye","type":"user"},{"_id":"63477bb66f8773f2a28daa15","avatarUrl":"/avatars/9a369763a73278cddcf2abcae594865d.svg","isPro":false,"fullname":"Dhruv Diddi","user":"ddiddi","type":"user"},{"_id":"63a475d827f1f64ed723a038","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1671722419765-noauth.jpeg","isPro":false,"fullname":"WonJae Roh","user":"snuro","type":"user"},{"_id":"646d239f4220471ca0c6471c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/646d239f4220471ca0c6471c/sRwzko8XEUVCkeD7jXceH.jpeg","isPro":false,"fullname":"Guy Yariv","user":"GuyYariv","type":"user"},{"_id":"6784a11952837d00f2e173a9","avatarUrl":"/avatars/b50439d12e2bc1ba4c2a356e243b97c0.svg","isPro":false,"fullname":"Jonghyuk Baek","user":"JH-BK","type":"user"},{"_id":"661c9059bcd78151e5c06ea1","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/661c9059bcd78151e5c06ea1/27bfNo1LZeZQ77vWuAa10.png","isPro":false,"fullname":"Ju He","user":"turkeyju","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
A novel visual tokenization framework enhances reconstruction performance and interpretability by embedding a PCA-like structure into the latent token space, resolving semantic-spectrum coupling with a diffusion decoder.
AI-generated summary
We introduce a novel visual tokenization framework that embeds a provable
PCA-like structure into the latent token space. While existing visual
tokenizers primarily optimize for reconstruction fidelity, they often neglect
the structural properties of the latent space -- a critical factor for both
interpretability and downstream tasks. Our method generates a 1D causal token
sequence for images, where each successive token contributes non-overlapping
information with mathematically guaranteed decreasing explained variance,
analogous to principal component analysis. This structural constraint ensures
the tokenizer extracts the most salient visual features first, with each
subsequent token adding diminishing yet complementary information.
Additionally, we identified and resolved a semantic-spectrum coupling effect
that causes the unwanted entanglement of high-level semantic content and
low-level spectral details in the tokens by leveraging a diffusion decoder.
Experiments demonstrate that our approach achieves state-of-the-art
reconstruction performance and enables better interpretability to align with
the human vision system. Moreover, auto-regressive models trained on our token
sequences achieve performance comparable to current state-of-the-art methods
while requiring fewer tokens for training and inference.