Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement
Learning on the Base Model
\n","updatedAt":"2025-04-01T23:24:52.147Z","author":{"_id":"65642d7401de72cb63165d22","avatarUrl":"/avatars/1f4417c4ac5e781ce73eae1060e3f7f2.svg","fullname":"ytaewon","name":"hamzzi","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":1,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.5393093228340149},"editors":["hamzzi"],"editorAvatarUrls":["/avatars/1f4417c4ac5e781ce73eae1060e3f7f2.svg"],"reactions":[{"reaction":"❤️","users":["reign12","Kelexine"],"count":2}],"isReport":false}},{"id":"67ede6506047e7ceb40096b1","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false},"createdAt":"2025-04-03T01:37:20.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\nThe following papers were recommended by the Semantic Scholar API \n\n* [Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning](https://huggingface.co/papers/2502.14768) (2025)\n* [R1-Zero's\"Aha Moment\"in Visual Reasoning on a 2B Non-SFT Model](https://huggingface.co/papers/2503.05132) (2025)\n* [DAPO: An Open-Source LLM Reinforcement Learning System at Scale](https://huggingface.co/papers/2503.14476) (2025)\n* [Understanding R1-Zero-Like Training: A Critical Perspective](https://huggingface.co/papers/2503.20783) (2025)\n* [Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn't](https://huggingface.co/papers/2503.16219) (2025)\n* [Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch and Beyond](https://huggingface.co/papers/2503.10460) (2025)\n* [Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models](https://huggingface.co/papers/2503.06749) (2025)\n\n\n Please give a thumbs up to this comment if you found it helpful!\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`","html":"
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
\n
The following papers were recommended by the Semantic Scholar API
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2025-04-03T01:37:20.569Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7293363213539124},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2503.24290","authors":[{"_id":"67eb762381e530baa56dc830","user":{"_id":"625026b7d2d191ac43320c5e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/625026b7d2d191ac43320c5e/2ExzHlZ-Bk8SQMyBjeY6N.jpeg","isPro":false,"fullname":"Jingcheng Hu","user":"reign12","type":"user"},"name":"Jingcheng Hu","status":"admin_assigned","statusLastChangedAt":"2025-04-01T08:09:02.123Z","hidden":false},{"_id":"67eb762381e530baa56dc831","user":{"_id":"664ae39ab5e5f95dc6209365","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/664ae39ab5e5f95dc6209365/8Z9ERYhX6URXh4si6jWGm.jpeg","isPro":false,"fullname":"Yinmin Zhang","user":"YinminZhang","type":"user"},"name":"Yinmin Zhang","status":"admin_assigned","statusLastChangedAt":"2025-04-01T08:09:09.884Z","hidden":false},{"_id":"67eb762381e530baa56dc832","name":"Qi Han","hidden":false},{"_id":"67eb762381e530baa56dc833","user":{"_id":"60d4440fe648443279aaffd8","avatarUrl":"/avatars/bf7209c1f14ae120f5bfda5fda1301b7.svg","isPro":false,"fullname":"Daxin Jiang","user":"djiang","type":"user"},"name":"Daxin Jiang","status":"admin_assigned","statusLastChangedAt":"2025-04-01T08:09:22.914Z","hidden":false},{"_id":"67eb762381e530baa56dc834","name":"Xiangyu Zhang","hidden":false},{"_id":"67eb762381e530baa56dc835","name":"Heung-Yeung Shum","hidden":false}],"publishedAt":"2025-03-31T16:36:05.000Z","submittedOnDailyAt":"2025-04-01T03:44:53.609Z","title":"Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement\n Learning on the Base Model","submittedOnDailyBy":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","isPro":false,"fullname":"AK","user":"akhaliq","type":"user"},"summary":"We introduce Open-Reasoner-Zero, the first open source implementation of\nlarge-scale reasoning-oriented RL training focusing on scalability, simplicity\nand accessibility. Through extensive experiments, we demonstrate that a\nminimalist approach, vanilla PPO with GAE (lambda=1, gamma=1) and\nstraightforward rule-based rewards, without any KL regularization, is\nsufficient to scale up both response length and benchmark performance, similar\nto the phenomenon observed in DeepSeek-R1-Zero. Using the same base model as\nDeepSeek-R1-Zero-Qwen-32B, our implementation achieves superior performance on\nAIME2024, MATH500, and the GPQA Diamond benchmark while demonstrating\nremarkable efficiency -- requiring only a tenth of the training steps, compared\nto DeepSeek-R1-Zero pipeline. In the spirit of open source, we release our\nsource code, parameter settings, training data, and model weights across\nvarious sizes.","upvotes":62,"discussionId":"67eb762481e530baa56dc872","projectPage":"https://huggingface.co/Open-Reasoner-Zero","githubRepo":"https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero","githubRepoAddedBy":"user","ai_summary":"Open-Reasoner-Zero achieves superior performance on reasoning benchmarks using a minimalist PPO approach, requiring fewer training steps than DeepSeek-R1-Zero.","ai_keywords":["reinforcement learning (RL)","PPO","GAE","benchmark performance","AIME2024","MATH500","GPQA Diamond","training steps","DeepSeek-R1-Zero-Qwen-32B"],"githubStars":2084},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"5f0c746619cb630495b814fd","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1594651707950-noauth.jpeg","isPro":true,"fullname":"Lewis Tunstall","user":"lewtun","type":"user"},{"_id":"5fa241b4a13e063b8b2b5e2f","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5fa241b4a13e063b8b2b5e2f/lbrO-eAcRDHqeoTPdMjkR.png","isPro":true,"fullname":"Prince Canuma","user":"prince-canuma","type":"user"},{"_id":"64f7f119a92703ef65d9a717","avatarUrl":"/avatars/118524faab66cecba6d4da622034b44b.svg","isPro":false,"fullname":"Sirui Zhang","user":"zsr200901","type":"user"},{"_id":"648eb1eb59c4e5c87dc116e0","avatarUrl":"/avatars/c636cea39c2c0937f01398c94ead5dad.svg","isPro":false,"fullname":"fdsqefsgergd","user":"T-representer","type":"user"},{"_id":"639883cb11095028d87b78c1","avatarUrl":"/avatars/0bd2e430affd0a1a1a85a61a8394a438.svg","isPro":false,"fullname":"Melih Özcan","user":"staycoolish","type":"user"},{"_id":"625026b7d2d191ac43320c5e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/625026b7d2d191ac43320c5e/2ExzHlZ-Bk8SQMyBjeY6N.jpeg","isPro":false,"fullname":"Jingcheng Hu","user":"reign12","type":"user"},{"_id":"63968940de7596eb94311d23","avatarUrl":"/avatars/89ed2b5345e713f3647ef9b336457b72.svg","isPro":false,"fullname":"Lei Yang","user":"diyer22","type":"user"},{"_id":"63f5b28c3aa49d8cb97f86d7","avatarUrl":"/avatars/2603d001589c5b2e7be9f2b0a5b53f66.svg","isPro":false,"fullname":"SunJianjian","user":"Swtju","type":"user"},{"_id":"63971c2a3507d82f7976b164","avatarUrl":"/avatars/9387a5b258cd1c80a7a4e71d0fa07994.svg","isPro":false,"fullname":"Jie Cheng","user":"jinachris","type":"user"},{"_id":"6440ff1fcea37249a0fb02d9","avatarUrl":"/avatars/d9c91f392f5574ba745b95b710011a92.svg","isPro":false,"fullname":"leeyusheng","user":"lee2333","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":3}">
Open-Reasoner-Zero achieves superior performance on reasoning benchmarks using a minimalist PPO approach, requiring fewer training steps than DeepSeek-R1-Zero.
AI-generated summary
We introduce Open-Reasoner-Zero, the first open source implementation of
large-scale reasoning-oriented RL training focusing on scalability, simplicity
and accessibility. Through extensive experiments, we demonstrate that a
minimalist approach, vanilla PPO with GAE (lambda=1, gamma=1) and
straightforward rule-based rewards, without any KL regularization, is
sufficient to scale up both response length and benchmark performance, similar
to the phenomenon observed in DeepSeek-R1-Zero. Using the same base model as
DeepSeek-R1-Zero-Qwen-32B, our implementation achieves superior performance on
AIME2024, MATH500, and the GPQA Diamond benchmark while demonstrating
remarkable efficiency -- requiring only a tenth of the training steps, compared
to DeepSeek-R1-Zero pipeline. In the spirit of open source, we release our
source code, parameter settings, training data, and model weights across
various sizes.