Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - SkyReels-A2: Compose Anything in Video Diffusion Transformers
\n","updatedAt":"2025-04-04T02:03:57.009Z","author":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","fullname":"AK","name":"akhaliq","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":9180,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.3687865436077118},"editors":["akhaliq"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg"],"reactions":[],"isReport":false}},{"id":"67ef63b2fb6b2bf56be2b6e0","author":{"_id":"63b4147f7af2e415f2599659","avatarUrl":"/avatars/7d8989ddefab16d31b377870e56e0550.svg","fullname":"hakkyu kim","name":"HAKKYU","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":2,"isUserFollowing":false},"createdAt":"2025-04-04T04:44:34.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"project page - METHOD:\n - The descriptions of the spatial feature branch and semantic feature branch are swapped. Image and description mismatch.\n","html":"
project page - METHOD:
\n
\n
The descriptions of the spatial feature branch and semantic feature branch are swapped. Image and description mismatch.
\n
\n","updatedAt":"2025-04-04T04:44:34.657Z","author":{"_id":"63b4147f7af2e415f2599659","avatarUrl":"/avatars/7d8989ddefab16d31b377870e56e0550.svg","fullname":"hakkyu kim","name":"HAKKYU","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":2,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.8226158022880554},"editors":["HAKKYU"],"editorAvatarUrls":["/avatars/7d8989ddefab16d31b377870e56e0550.svg"],"reactions":[],"isReport":false}},{"id":"67f088dea6f1a1183fcb0741","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false},"createdAt":"2025-04-05T01:35:26.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\nThe following papers were recommended by the Semantic Scholar API \n\n* [CINEMA: Coherent Multi-Subject Video Generation via MLLM-Based Guidance](https://huggingface.co/papers/2503.10391) (2025)\n* [CustomVideoX: 3D Reference Attention Driven Dynamic Adaptation for Zero-Shot Customized Video Diffusion Transformers](https://huggingface.co/papers/2502.06527) (2025)\n* [Goku: Flow Based Video Generative Foundation Models](https://huggingface.co/papers/2502.04896) (2025)\n* [Phantom: Subject-consistent video generation via cross-modal alignment](https://huggingface.co/papers/2502.11079) (2025)\n* [Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos](https://huggingface.co/papers/2502.21314) (2025)\n* [RealGeneral: Unifying Visual Generation via Temporal In-Context Learning with Video Models](https://huggingface.co/papers/2503.10406) (2025)\n* [Get In Video: Add Anything You Want to the Video](https://huggingface.co/papers/2503.06268) (2025)\n\n\n Please give a thumbs up to this comment if you found it helpful!\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`","html":"
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
\n
The following papers were recommended by the Semantic Scholar API
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2025-04-05T01:35:26.910Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.6765714287757874},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2504.02436","authors":[{"_id":"67ef3dfae8b932ae7a832950","user":{"_id":"617ba1820e4237bd1731b867","avatarUrl":"/avatars/f9de06363e64bddd7dc977e96e85df8a.svg","isPro":false,"fullname":"zhengcong fei","user":"onion","type":"user"},"name":"Zhengcong Fei","status":"admin_assigned","statusLastChangedAt":"2025-04-04T07:19:16.548Z","hidden":false},{"_id":"67ef3dfae8b932ae7a832951","user":{"_id":"65dc3a850af7e21ba40e939f","avatarUrl":"/avatars/e129c64617675edd05d4317d39604318.svg","isPro":false,"fullname":"Li","user":"Debang","type":"user"},"name":"Debang Li","status":"admin_assigned","statusLastChangedAt":"2025-04-04T07:19:27.042Z","hidden":false},{"_id":"67ef3dfae8b932ae7a832952","user":{"_id":"65bef422fdb8d33cefeaccc3","avatarUrl":"/avatars/d40b0d7dda21fa1a68c291d11bc357ec.svg","isPro":false,"fullname":"Qiu Di","user":"diqiu7","type":"user"},"name":"Di Qiu","status":"admin_assigned","statusLastChangedAt":"2025-04-04T07:19:41.458Z","hidden":false},{"_id":"67ef3dfae8b932ae7a832953","name":"Jiahua Wang","hidden":false},{"_id":"67ef3dfae8b932ae7a832954","name":"Yikun Dou","hidden":false},{"_id":"67ef3dfae8b932ae7a832955","user":{"_id":"62e0f1314db2175cd270ad08","avatarUrl":"/avatars/1d3d6af6c63557f4abf0484e028fa942.svg","isPro":false,"fullname":"Rui Wang","user":"ruiwang","type":"user"},"name":"Rui Wang","status":"admin_assigned","statusLastChangedAt":"2025-04-04T07:20:11.206Z","hidden":false},{"_id":"67ef3dfae8b932ae7a832956","user":{"_id":"666a674967c686801acf25bb","avatarUrl":"/avatars/c1f3edd63fd378dfb555e6413a966932.svg","isPro":false,"fullname":"jingtao xu","user":"raul678","type":"user"},"name":"Jingtao Xu","status":"admin_assigned","statusLastChangedAt":"2025-04-04T07:20:20.880Z","hidden":false},{"_id":"67ef3dfae8b932ae7a832957","user":{"_id":"634672bfb7b4e71c7f45360f","avatarUrl":"/avatars/4b646fc3e271be90b9ec619d42ce3e99.svg","isPro":false,"fullname":"Fan Mingyuan","user":"MichaelFan","type":"user"},"name":"Mingyuan Fan","status":"admin_assigned","statusLastChangedAt":"2025-04-04T07:20:32.597Z","hidden":false},{"_id":"67ef3dfae8b932ae7a832958","name":"Guibin Chen","hidden":false},{"_id":"67ef3dfae8b932ae7a832959","name":"Yang Li","hidden":false},{"_id":"67ef3dfae8b932ae7a83295a","name":"Yahui Zhou","hidden":false}],"publishedAt":"2025-04-03T09:50:50.000Z","submittedOnDailyAt":"2025-04-04T00:33:57.000Z","title":"SkyReels-A2: Compose Anything in Video Diffusion Transformers","submittedOnDailyBy":{"_id":"60f1abe7544c2adfd699860c","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674929746905-60f1abe7544c2adfd699860c.jpeg","isPro":false,"fullname":"AK","user":"akhaliq","type":"user"},"summary":"This paper presents SkyReels-A2, a controllable video generation framework\ncapable of assembling arbitrary visual elements (e.g., characters, objects,\nbackgrounds) into synthesized videos based on textual prompts while maintaining\nstrict consistency with reference images for each element. We term this task\nelements-to-video (E2V), whose primary challenges lie in preserving the\nfidelity of each reference element, ensuring coherent composition of the scene,\nand achieving natural outputs. To address these, we first design a\ncomprehensive data pipeline to construct prompt-reference-video triplets for\nmodel training. Next, we propose a novel image-text joint embedding model to\ninject multi-element representations into the generative process, balancing\nelement-specific consistency with global coherence and text alignment. We also\noptimize the inference pipeline for both speed and output stability. Moreover,\nwe introduce a carefully curated benchmark for systematic evaluation, i.e, A2\nBench. Experiments demonstrate that our framework can generate diverse,\nhigh-quality videos with precise element control. SkyReels-A2 is the first\nopen-source commercial grade model for the generation of E2V, performing\nfavorably against advanced closed-source commercial models. We anticipate\nSkyReels-A2 will advance creative applications such as drama and virtual\ne-commerce, pushing the boundaries of controllable video generation.","upvotes":39,"discussionId":"67ef3dfee8b932ae7a832a97","githubRepo":"https://github.com/SkyworkAI/SkyReels-A2","githubRepoAddedBy":"auto","ai_summary":"SkyReels-A2, an open-source framework, generates high-quality, element-controlled videos from textual prompts using a novel image-text embedding model, optimized inference pipeline, and A2 Bench for systematic evaluation.","ai_keywords":["elements-to-video (E2V)","image-text joint embedding","generative process","prompt-reference-video triplets","output stability","A2 Bench"],"githubStars":701},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"63468720dd6d90d82ccf3450","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63468720dd6d90d82ccf3450/tVBFlmZNz8FRMkOrDaDID.jpeg","isPro":false,"fullname":"YSH","user":"BestWishYsh","type":"user"},{"_id":"63ddc7b80f6d2d6c3efe3600","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63ddc7b80f6d2d6c3efe3600/RX5q9T80Jl3tn6z03ls0l.jpeg","isPro":false,"fullname":"J","user":"dashfunnydashdash","type":"user"},{"_id":"635964636a61954080850e1d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/635964636a61954080850e1d/0bfExuDTrHTtm8c-40cDM.png","isPro":false,"fullname":"William Lamkin","user":"phanes","type":"user"},{"_id":"6683fc5344a65be1aab25dc0","avatarUrl":"/avatars/e13cde3f87b59e418838d702807df3b5.svg","isPro":false,"fullname":"hjkim","user":"hojie11","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"66f71a048ad02d06fb0123de","avatarUrl":"/avatars/423328834946bc1fdbcdf741b4baa06b.svg","isPro":false,"fullname":"Phil Quist","user":"philquist","type":"user"},{"_id":"67ef88d818ee7ec5982c644c","avatarUrl":"/avatars/15a053accd604159b5f25bd6ac903585.svg","isPro":false,"fullname":"Steph Moreland","user":"smoreland","type":"user"},{"_id":"67ef92467c9803451be0bef5","avatarUrl":"/avatars/9d5fe1a9465a0e220544c5af08923918.svg","isPro":false,"fullname":"libin xiong","user":"lbxiong","type":"user"},{"_id":"641d9c125b4c7eb277d1f29d","avatarUrl":"/avatars/4c24f0a6a2d0466386574a560bce920e.svg","isPro":false,"fullname":"Gharbali","user":"AliG62","type":"user"},{"_id":"6528a57bf0042c8301d217dc","avatarUrl":"/avatars/b7e1398aec545a0342c05c67c5493c8b.svg","isPro":false,"fullname":"HanSaem Kim","user":"kensaem","type":"user"},{"_id":"64f15d2662a7109a6e72be2a","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/64f15d2662a7109a6e72be2a/NDM5sKZ4eN3FSeOIW3U1I.jpeg","isPro":false,"fullname":"luokai","user":"iamluokai","type":"user"},{"_id":"65089ae54afcb7378d1e3fcb","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/65089ae54afcb7378d1e3fcb/jau-lPKCnry75SBJ0mjjc.jpeg","isPro":false,"fullname":"Bugrahan","user":"nuwandaa","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0}">
SkyReels-A2, an open-source framework, generates high-quality, element-controlled videos from textual prompts using a novel image-text embedding model, optimized inference pipeline, and A2 Bench for systematic evaluation.
AI-generated summary
This paper presents SkyReels-A2, a controllable video generation framework
capable of assembling arbitrary visual elements (e.g., characters, objects,
backgrounds) into synthesized videos based on textual prompts while maintaining
strict consistency with reference images for each element. We term this task
elements-to-video (E2V), whose primary challenges lie in preserving the
fidelity of each reference element, ensuring coherent composition of the scene,
and achieving natural outputs. To address these, we first design a
comprehensive data pipeline to construct prompt-reference-video triplets for
model training. Next, we propose a novel image-text joint embedding model to
inject multi-element representations into the generative process, balancing
element-specific consistency with global coherence and text alignment. We also
optimize the inference pipeline for both speed and output stability. Moreover,
we introduce a carefully curated benchmark for systematic evaluation, i.e, A2
Bench. Experiments demonstrate that our framework can generate diverse,
high-quality videos with precise element control. SkyReels-A2 is the first
open-source commercial grade model for the generation of E2V, performing
favorably against advanced closed-source commercial models. We anticipate
SkyReels-A2 will advance creative applications such as drama and virtual
e-commerce, pushing the boundaries of controllable video generation.