Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - Easy Dataset: A Unified and Extensible Framework for Synthesizing LLM
Fine-Tuning Data from Unstructured Documents
https://github.com/ConardLi/easy-dataset\n","updatedAt":"2025-07-08T08:10:18.922Z","author":{"_id":"642fef28a043f0ac7defa8a9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/642fef28a043f0ac7defa8a9/RwOEkuj3fOnOA54tGR7Ea.png","fullname":"Yaowei Zheng","name":"hiyouga","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":3168,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.5347903966903687},"editors":["hiyouga"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/642fef28a043f0ac7defa8a9/RwOEkuj3fOnOA54tGR7Ea.png"],"reactions":[{"reaction":"🚀","users":["kingsley01","zhangcunwang","elsatch","hvgg1ngface","dvilasuero","xgdyp"],"count":6}],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2507.04009","authors":[{"_id":"686cd234cc230c60b4100aec","name":"Ziyang Miao","hidden":false},{"_id":"686cd234cc230c60b4100aed","name":"Qiyu Sun","hidden":false},{"_id":"686cd234cc230c60b4100aee","name":"Jingyuan Wang","hidden":false},{"_id":"686cd234cc230c60b4100aef","user":{"_id":"66a48a77f9565635ebc33a87","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/66a48a77f9565635ebc33a87/WW8BFd1D9xZbGIPZPfdHk.png","isPro":false,"fullname":"GYC","user":"oGYCo","type":"user"},"name":"Yuchen Gong","status":"claimed_verified","statusLastChangedAt":"2025-07-08T09:05:42.785Z","hidden":false},{"_id":"686cd234cc230c60b4100af0","user":{"_id":"642fef28a043f0ac7defa8a9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/642fef28a043f0ac7defa8a9/RwOEkuj3fOnOA54tGR7Ea.png","isPro":false,"fullname":"Yaowei Zheng","user":"hiyouga","type":"user"},"name":"Yaowei Zheng","status":"claimed_verified","statusLastChangedAt":"2025-07-08T08:39:35.178Z","hidden":false},{"_id":"686cd234cc230c60b4100af1","user":{"_id":"67b1f0a6d99f33b9718c10b8","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/67b1f0a6d99f33b9718c10b8/ZBcXsw2cpgpnFDbRKkQHF.jpeg","isPro":false,"fullname":"ConardLi","user":"Conard","type":"user"},"name":"Shiqi Li","status":"claimed_verified","statusLastChangedAt":"2025-07-17T08:21:10.076Z","hidden":false},{"_id":"686cd234cc230c60b4100af2","name":"Richong Zhang","hidden":false}],"mediaUrls":["https://cdn-uploads.huggingface.co/production/uploads/642fef28a043f0ac7defa8a9/Ztx5877vKyqqZINgge_1B.mp4"],"publishedAt":"2025-07-05T11:38:59.000Z","submittedOnDailyAt":"2025-07-08T06:40:18.914Z","title":"Easy Dataset: A Unified and Extensible Framework for Synthesizing LLM\n Fine-Tuning Data from Unstructured Documents","submittedOnDailyBy":{"_id":"642fef28a043f0ac7defa8a9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/642fef28a043f0ac7defa8a9/RwOEkuj3fOnOA54tGR7Ea.png","isPro":false,"fullname":"Yaowei Zheng","user":"hiyouga","type":"user"},"summary":"Large language models (LLMs) have shown impressive performance on\ngeneral-purpose tasks, yet adapting them to specific domains remains\nchallenging due to the scarcity of high-quality domain data. Existing data\nsynthesis tools often struggle to extract reliable fine-tuning data from\nheterogeneous documents effectively. To address this limitation, we propose\nEasy Dataset, a unified framework for synthesizing fine-tuning data from\nunstructured documents via an intuitive graphical user interface (GUI).\nSpecifically, Easy Dataset allows users to easily configure text extraction\nmodels and chunking strategies to transform raw documents into coherent text\nchunks. It then leverages a persona-driven prompting approach to generate\ndiverse question-answer pairs using public-available LLMs. Throughout the\npipeline, a human-in-the-loop visual interface facilitates the review and\nrefinement of intermediate outputs to ensure data quality. Experiments on a\nfinancial question-answering task show that fine-tuning LLMs on the synthesized\ndataset significantly improves domain-specific performance while preserving\ngeneral knowledge. The source code and installable package are available at\nhttps://github.com/ConardLi/easy-dataset and have garnered over 9,000 GitHub\nstars.","upvotes":53,"discussionId":"686cd234cc230c60b4100af3","githubRepo":"https://github.com/ConardLi/easy-dataset","githubRepoAddedBy":"user","ai_summary":"A framework called Easy Dataset synthesizes fine-tuning data from unstructured documents using a GUI and LLMs, improving domain-specific performance of LLMs while maintaining general knowledge.","ai_keywords":["large language models","fine-tuning","domain-specific performance","data synthesis","graphical user interface","text extraction models","chunking strategies","persona-driven prompting","human-in-the-loop","question-answer pairs"],"githubStars":13384},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"642fef28a043f0ac7defa8a9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/642fef28a043f0ac7defa8a9/RwOEkuj3fOnOA54tGR7Ea.png","isPro":false,"fullname":"Yaowei Zheng","user":"hiyouga","type":"user"},{"_id":"6455ec9bd808eebdefc4ceec","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6455ec9bd808eebdefc4ceec/AcwIUKFKjUgPpfJq07zQs.jpeg","isPro":false,"fullname":"Dongdong Kuang","user":"kingsley01","type":"user"},{"_id":"647d9b337f9ad5e44ba66337","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/647d9b337f9ad5e44ba66337/xx6E07X739NoDqEg7s93R.jpeg","isPro":false,"fullname":"Zhangchi Feng","user":"BUAADreamer","type":"user"},{"_id":"665369e6420092799deb865f","avatarUrl":"/avatars/284bd5458f559e1036a7c68cd5f1c8e2.svg","isPro":false,"fullname":"Ziyang Miao","user":"hvgg1ngface","type":"user"},{"_id":"664d7fbd484d0433c51415cb","avatarUrl":"/avatars/6e5b2f1788b9ee407d1760280e861bc5.svg","isPro":false,"fullname":"sqy","user":"ThisPipi","type":"user"},{"_id":"61b75d50516a20acdf3b85ac","avatarUrl":"/avatars/5ef53385a8c9c0f10418e2ecc6bc5051.svg","isPro":false,"fullname":"Zhijie Nie","user":"ArthurN","type":"user"},{"_id":"648eb1eb59c4e5c87dc116e0","avatarUrl":"/avatars/c636cea39c2c0937f01398c94ead5dad.svg","isPro":false,"fullname":"fdsqefsgergd","user":"T-representer","type":"user"},{"_id":"649a5d955e3650ce280235bd","avatarUrl":"/avatars/26f72ac6b9b2d50fe981860fc326f63b.svg","isPro":false,"fullname":"CoolColoury","user":"CoolHan","type":"user"},{"_id":"6524d66966ebe0519873c4c5","avatarUrl":"/avatars/18a52cf9cf90f9ff309284a1c9cae6ac.svg","isPro":false,"fullname":"Junhao Zhang","user":"OnlyAR","type":"user"},{"_id":"66587a2cab516e31ebc470d0","avatarUrl":"/avatars/e6b773790a7d6469b4eaeb6b29db468f.svg","isPro":false,"fullname":"ZHANG Cunwang","user":"zhangcunwang","type":"user"},{"_id":"650abbb71aece923f21d87fc","avatarUrl":"/avatars/f09ff031c278bc42bfd7a563853e142c.svg","isPro":false,"fullname":"Junbo Niu","user":"Niujunbo2002","type":"user"},{"_id":"665b133508d536a8ac804f7d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/Uwi0OnANdTbRbHHQvGqvR.png","isPro":false,"fullname":"Paulson","user":"Pnaomi","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":3}">
A framework called Easy Dataset synthesizes fine-tuning data from unstructured documents using a GUI and LLMs, improving domain-specific performance of LLMs while maintaining general knowledge.
AI-generated summary
Large language models (LLMs) have shown impressive performance on
general-purpose tasks, yet adapting them to specific domains remains
challenging due to the scarcity of high-quality domain data. Existing data
synthesis tools often struggle to extract reliable fine-tuning data from
heterogeneous documents effectively. To address this limitation, we propose
Easy Dataset, a unified framework for synthesizing fine-tuning data from
unstructured documents via an intuitive graphical user interface (GUI).
Specifically, Easy Dataset allows users to easily configure text extraction
models and chunking strategies to transform raw documents into coherent text
chunks. It then leverages a persona-driven prompting approach to generate
diverse question-answer pairs using public-available LLMs. Throughout the
pipeline, a human-in-the-loop visual interface facilitates the review and
refinement of intermediate outputs to ensure data quality. Experiments on a
financial question-answering task show that fine-tuning LLMs on the synthesized
dataset significantly improves domain-specific performance while preserving
general knowledge. The source code and installable package are available at
https://github.com/ConardLi/easy-dataset and have garnered over 9,000 GitHub
stars.