Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
Paper page - Step-DeepResearch Technical Report
[go: Go Back, main page]

@taesiri\n\t's contributions. It appears the latest version has been updated on arXiv. Could you please help update the corresponding paper version on Hugging Face?\"

\n","updatedAt":"2025-12-25T04:43:31.677Z","author":{"_id":"648183bfea00b120773198ba","avatarUrl":"/avatars/b69d04bba11e393d1a59e98653d5cfa6.svg","fullname":"huchen","name":"ccchen1006","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":4,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.9011975526809692},"editors":["ccchen1006"],"editorAvatarUrls":["/avatars/b69d04bba11e393d1a59e98653d5cfa6.svg"],"reactions":[],"isReport":false,"parentCommentId":"694b513c6c32517d14f0fbb5"}},{"id":"694cc70a2b3837395056041c","author":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","fullname":"taesiri","name":"taesiri","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":235,"isUserFollowing":false},"createdAt":"2025-12-25T05:09:30.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"Hey @ccchen1006 \nWhich part of this page needs to be updated? When I click the PDF, it shows the latest version (December 24). Isn’t that already the most recent one?\n","html":"

Hey \n\n@ccchen1006\n\t
Which part of this page needs to be updated? When I click the PDF, it shows the latest version (December 24). Isn’t that already the most recent one?

\n","updatedAt":"2025-12-25T05:09:30.680Z","author":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","fullname":"taesiri","name":"taesiri","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":235,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.857929527759552},"editors":["taesiri"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg"],"reactions":[{"reaction":"πŸ‘","users":["ccchen1006"],"count":1}],"isReport":false,"parentCommentId":"694b513c6c32517d14f0fbb5"}},{"id":"694cfb8abcad875d36f06b72","author":{"_id":"648183bfea00b120773198ba","avatarUrl":"/avatars/b69d04bba11e393d1a59e98653d5cfa6.svg","fullname":"huchen","name":"ccchen1006","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":4,"isUserFollowing":false},"createdAt":"2025-12-25T08:53:30.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"Could you please add the GitHub link? Thanks a lot! \nhttps://github.com/stepfun-ai/StepDeepResearch","html":"

Could you please add the GitHub link? Thanks a lot!
https://github.com/stepfun-ai/StepDeepResearch

\n","updatedAt":"2025-12-25T08:53:30.526Z","author":{"_id":"648183bfea00b120773198ba","avatarUrl":"/avatars/b69d04bba11e393d1a59e98653d5cfa6.svg","fullname":"huchen","name":"ccchen1006","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":4,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.6295321583747864},"editors":["ccchen1006"],"editorAvatarUrls":["/avatars/b69d04bba11e393d1a59e98653d5cfa6.svg"],"reactions":[{"reaction":"πŸ€—","users":["taesiri"],"count":1}],"isReport":false,"parentCommentId":"694b513c6c32517d14f0fbb5"}},{"id":"694d0034b2ad6728a10edf54","author":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","fullname":"taesiri","name":"taesiri","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":235,"isUserFollowing":false},"createdAt":"2025-12-25T09:13:24.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"Done!","html":"

Done!

\n","updatedAt":"2025-12-25T09:13:24.425Z","author":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","fullname":"taesiri","name":"taesiri","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":235,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.6595590114593506},"editors":["taesiri"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg"],"reactions":[{"reaction":"πŸ‘","users":["ccchen1006"],"count":1}],"isReport":false,"parentCommentId":"694b513c6c32517d14f0fbb5"}}]},{"id":"694f0f4c785ac06cb1d374bd","author":{"_id":"65243980050781c16f234f1f","avatarUrl":"/avatars/743a009681d5d554c27e04300db9f267.svg","fullname":"Avi","name":"avahal","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":3,"isUserFollowing":false},"createdAt":"2025-12-26T22:42:20.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"arXiv lens breakdown of this paper πŸ‘‰ https://arxivlens.com/PaperView/Details/step-deepresearch-technical-report-1855-b4852a8e\n- Executive Summary\n- Detailed Breakdown\n- Practical Applications","html":"

arXiv lens breakdown of this paper πŸ‘‰ https://arxivlens.com/PaperView/Details/step-deepresearch-technical-report-1855-b4852a8e

\n
    \n
  • Executive Summary
  • \n
  • Detailed Breakdown
  • \n
  • Practical Applications
  • \n
\n","updatedAt":"2025-12-26T22:42:20.272Z","author":{"_id":"65243980050781c16f234f1f","avatarUrl":"/avatars/743a009681d5d554c27e04300db9f267.svg","fullname":"Avi","name":"avahal","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":3,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7063459157943726},"editors":["avahal"],"editorAvatarUrls":["/avatars/743a009681d5d554c27e04300db9f267.svg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2512.20491","authors":[{"_id":"694b5132746a34b55dd53c4e","name":"Chen Hu","hidden":false},{"_id":"694b5132746a34b55dd53c4f","name":"Haikuo Du","hidden":false},{"_id":"694b5132746a34b55dd53c50","name":"Heng Wang","hidden":false},{"_id":"694b5132746a34b55dd53c51","name":"Lin Lin","hidden":false},{"_id":"694b5132746a34b55dd53c52","name":"Mingrui Chen","hidden":false},{"_id":"694b5132746a34b55dd53c53","name":"Peng Liu","hidden":false},{"_id":"694b5132746a34b55dd53c54","name":"Ruihang Miao","hidden":false},{"_id":"694b5132746a34b55dd53c55","name":"Tianchi Yue","hidden":false},{"_id":"694b5132746a34b55dd53c56","name":"Wang You","hidden":false},{"_id":"694b5132746a34b55dd53c57","name":"Wei Ji","hidden":false},{"_id":"694b5132746a34b55dd53c58","name":"Wei Yuan","hidden":false},{"_id":"694b5132746a34b55dd53c59","name":"Wenjin Deng","hidden":false},{"_id":"694b5132746a34b55dd53c5a","name":"Xiaojian Yuan","hidden":false},{"_id":"694b5132746a34b55dd53c5b","user":{"_id":"67f33b43ccb05db5f0190cf6","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/c-UeSyHfO7QchwNXW9mgu.png","isPro":false,"fullname":"ZhangXiaoyun","user":"DadaCloud01","type":"user"},"name":"Xiaoyun Zhang","status":"claimed_verified","statusLastChangedAt":"2025-12-29T14:24:55.909Z","hidden":false},{"_id":"694b5132746a34b55dd53c5c","name":"Xiangyu Liu","hidden":false},{"_id":"694b5132746a34b55dd53c5d","user":{"_id":"6596ca41b1a78672691f9560","avatarUrl":"/avatars/ee91aa28fbec0a3090472006ba1bc04f.svg","isPro":false,"fullname":"Liu Xikai","user":"KaneAllen","type":"user"},"name":"Xikai Liu","status":"claimed_verified","statusLastChangedAt":"2025-12-29T14:24:52.962Z","hidden":false},{"_id":"694b5132746a34b55dd53c5e","name":"Yanming Xu","hidden":false},{"_id":"694b5132746a34b55dd53c5f","name":"Yicheng Cao","hidden":false},{"_id":"694b5132746a34b55dd53c60","name":"Yifei Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c61","name":"Yongyao Wang","hidden":false},{"_id":"694b5132746a34b55dd53c62","name":"Yubo Shu","hidden":false},{"_id":"694b5132746a34b55dd53c63","name":"Yurong Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c64","name":"Yuxiang Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c65","name":"Zheng Gong","hidden":false},{"_id":"694b5132746a34b55dd53c66","name":"Zhichao Chang","hidden":false},{"_id":"694b5132746a34b55dd53c67","name":"Binyan Li","hidden":false},{"_id":"694b5132746a34b55dd53c68","name":"Dan Ma","hidden":false},{"_id":"694b5132746a34b55dd53c69","name":"Furong Jia","hidden":false},{"_id":"694b5132746a34b55dd53c6a","name":"Hongyuan Wang","hidden":false},{"_id":"694b5132746a34b55dd53c6b","name":"Jiayu Liu","hidden":false},{"_id":"694b5132746a34b55dd53c6c","name":"Jing Bai","hidden":false},{"_id":"694b5132746a34b55dd53c6d","name":"Junlan Liu","hidden":false},{"_id":"694b5132746a34b55dd53c6e","name":"Manjiao Liu","hidden":false},{"_id":"694b5132746a34b55dd53c6f","name":"Na Wang","hidden":false},{"_id":"694b5132746a34b55dd53c70","name":"Qiuping Wu","hidden":false},{"_id":"694b5132746a34b55dd53c71","name":"Qinxin Du","hidden":false},{"_id":"694b5132746a34b55dd53c72","name":"Shiwei Li","hidden":false},{"_id":"694b5132746a34b55dd53c73","name":"Wen Sun","hidden":false},{"_id":"694b5132746a34b55dd53c74","name":"Yifeng Gong","hidden":false},{"_id":"694b5132746a34b55dd53c75","name":"Yonglin Chen","hidden":false},{"_id":"694b5132746a34b55dd53c76","name":"Yuling Zhao","hidden":false},{"_id":"694b5132746a34b55dd53c77","name":"Yuxuan Lin","hidden":false},{"_id":"694b5132746a34b55dd53c78","name":"Ziqi Ren","hidden":false},{"_id":"694b5132746a34b55dd53c79","name":"Zixuan Wang","hidden":false},{"_id":"694b5132746a34b55dd53c7a","name":"Aihu Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c7b","name":"Brian Li","hidden":false},{"_id":"694b5132746a34b55dd53c7c","name":"Buyun Ma","hidden":false},{"_id":"694b5132746a34b55dd53c7d","name":"Kang An","hidden":false},{"_id":"694b5132746a34b55dd53c7e","name":"Li Xie","hidden":false},{"_id":"694b5132746a34b55dd53c7f","name":"Mingliang Li","hidden":false},{"_id":"694b5132746a34b55dd53c80","name":"Pan Li","hidden":false},{"_id":"694b5132746a34b55dd53c81","name":"Shidong Yang","hidden":false},{"_id":"694b5132746a34b55dd53c82","name":"Xi Chen","hidden":false},{"_id":"694b5132746a34b55dd53c83","name":"Xiaojia Liu","hidden":false},{"_id":"694b5132746a34b55dd53c84","name":"Yuchu Luo","hidden":false},{"_id":"694b5132746a34b55dd53c85","name":"Yuan Song","hidden":false},{"_id":"694b5132746a34b55dd53c86","name":"YuanHao Ding","hidden":false},{"_id":"694b5132746a34b55dd53c87","name":"Yuanwei Liang","hidden":false},{"_id":"694b5132746a34b55dd53c88","name":"Zexi Li","hidden":false},{"_id":"694b5132746a34b55dd53c89","name":"Zhaoning Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c8a","name":"Zixin Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c8b","name":"Binxing Jiao","hidden":false},{"_id":"694b5132746a34b55dd53c8c","name":"Daxin Jiang","hidden":false},{"_id":"694b5132746a34b55dd53c8d","name":"Jiansheng Chen","hidden":false},{"_id":"694b5132746a34b55dd53c8e","name":"Jing Li","hidden":false},{"_id":"694b5132746a34b55dd53c8f","name":"Xiangyu Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c90","name":"Yibo Zhu","hidden":false}],"publishedAt":"2025-12-23T16:32:27.000Z","submittedOnDailyAt":"2025-12-24T00:04:36.581Z","title":"Step-DeepResearch Technical Report","submittedOnDailyBy":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},"summary":"As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.","upvotes":86,"discussionId":"694b5132746a34b55dd53c91","githubRepo":"https://github.com/stepfun-ai/StepDeepResearch","githubRepoAddedBy":"user","ai_summary":"Step-DeepResearch, an end-to-end agent enhanced with a data synthesis strategy and progressive training, achieves expert-level capabilities in deep research scenarios, outperforming established models.","ai_keywords":["Deep Research","BrowseComp","Step-DeepResearch","Data Synthesis Strategy","Atomic Capabilities","agentic mid-training","SFT","RL","Checklist-style Judger","ADR-Bench","Scale AI Research Rubrics","OpenAI","Gemini DeepResearch"],"githubStars":504,"organization":{"_id":"66e43eae9d477f566f937935","name":"stepfun-ai","fullname":"StepFun","avatar":"https://cdn-uploads.huggingface.co/production/uploads/66935cee39002fc0569c2943/Qv8QPbkgoKE3wR4jTzHiy.png"}},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"6463554dd2044cd1d7c6e0bf","avatarUrl":"/avatars/d7653623117268c545a7063fec69664b.svg","isPro":false,"fullname":"Bingzheng Wei","user":"Bingzheng","type":"user"},{"_id":"63c1699e40a26dd2db32400d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63c1699e40a26dd2db32400d/3N0-Zp8igv8-52mXAdiiq.jpeg","isPro":false,"fullname":"Chroma","user":"Chroma111","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"655e4c26d5c0d3db535cdd66","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/655e4c26d5c0d3db535cdd66/7gUJ8urq7mEZ4OE4ppQCj.png","isPro":false,"fullname":"Lincoln","user":"Presidentlin","type":"user"},{"_id":"65377c30e48353201e6fdda0","avatarUrl":"/avatars/a8f803b6f2e598eaee9c52c0d2ddfc16.svg","isPro":false,"fullname":"Jiaheng Liu","user":"CheeryLJH","type":"user"},{"_id":"6682497fe365c0f666ff1149","avatarUrl":"/avatars/ba32c978761ef7ac8cc467184b8441a4.svg","isPro":false,"fullname":"Xinyao Liao","user":"leoisufa","type":"user"},{"_id":"630443483926de1f7ec6bda0","avatarUrl":"/avatars/e8e95ab0d03f58c61846ccc1318502fe.svg","isPro":false,"fullname":"Rui Wang","user":"budui","type":"user"},{"_id":"6540a5fd001b872f8fd70a3c","avatarUrl":"/avatars/05a7ef4b0b82b7722a9fab545ffd5351.svg","isPro":false,"fullname":"SelfSoda","user":"SelfSoda","type":"user"},{"_id":"65ab85b968139e3c42c6c50d","avatarUrl":"/avatars/fe35f055ecc49412b086a9a5513a11a8.svg","isPro":false,"fullname":"Jingwei Wu","user":"jingwwu","type":"user"},{"_id":"647953b2a68454566355f2e8","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/SyHeSEp8VOizqeVs7EyXN.png","isPro":false,"fullname":"Pengtian Zhu","user":"Zupiter","type":"user"},{"_id":"684d57f26e04c265777ead3f","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/cuOj-bQqukSZreXgUJlfm.png","isPro":false,"fullname":"Joakim Lee","user":"Reinforcement4All","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":2,"organization":{"_id":"66e43eae9d477f566f937935","name":"stepfun-ai","fullname":"StepFun","avatar":"https://cdn-uploads.huggingface.co/production/uploads/66935cee39002fc0569c2943/Qv8QPbkgoKE3wR4jTzHiy.png"}}">
Papers
arxiv:2512.20491

Step-DeepResearch Technical Report

Published on Dec 23, 2025
Β· Submitted by
taesiri
on Dec 24, 2025
#2 Paper of the day
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

Step-DeepResearch, an end-to-end agent enhanced with a data synthesis strategy and progressive training, achieves expert-level capabilities in deep research scenarios, outperforming established models.

AI-generated summary

As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.

Community

Paper submitter

As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.

Β·

Many thanks for @taesiri 's contributions. It appears the latest version has been updated on arXiv. Could you please help update the corresponding paper version on Hugging Face?"

arXiv lens breakdown of this paper πŸ‘‰ https://arxivlens.com/PaperView/Details/step-deepresearch-technical-report-1855-b4852a8e

  • Executive Summary
  • Detailed Breakdown
  • Practical Applications

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2512.20491 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2512.20491 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2512.20491 in a Space README.md to link it from this page.

Collections including this paper 12