Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - Step-DeepResearch Technical Report
@taesiri\n\t's contributions. It appears the latest version has been updated on arXiv. Could you please help update the corresponding paper version on Hugging Face?\" \n","updatedAt":"2025-12-25T04:43:31.677Z","author":{"_id":"648183bfea00b120773198ba","avatarUrl":"/avatars/b69d04bba11e393d1a59e98653d5cfa6.svg","fullname":"huchen","name":"ccchen1006","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":4,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.9011975526809692},"editors":["ccchen1006"],"editorAvatarUrls":["/avatars/b69d04bba11e393d1a59e98653d5cfa6.svg"],"reactions":[],"isReport":false,"parentCommentId":"694b513c6c32517d14f0fbb5"}},{"id":"694cc70a2b3837395056041c","author":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","fullname":"taesiri","name":"taesiri","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":235,"isUserFollowing":false},"createdAt":"2025-12-25T05:09:30.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"Hey @ccchen1006 \nWhich part of this page needs to be updated? When I click the PDF, it shows the latest version (December 24). Isnβt that already the most recent one?\n","html":"
Hey \n\n@ccchen1006\n\t Which part of this page needs to be updated? When I click the PDF, it shows the latest version (December 24). Isnβt that already the most recent one?
\n","updatedAt":"2025-12-25T05:09:30.680Z","author":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","fullname":"taesiri","name":"taesiri","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":235,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.857929527759552},"editors":["taesiri"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg"],"reactions":[{"reaction":"π","users":["ccchen1006"],"count":1}],"isReport":false,"parentCommentId":"694b513c6c32517d14f0fbb5"}},{"id":"694cfb8abcad875d36f06b72","author":{"_id":"648183bfea00b120773198ba","avatarUrl":"/avatars/b69d04bba11e393d1a59e98653d5cfa6.svg","fullname":"huchen","name":"ccchen1006","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":4,"isUserFollowing":false},"createdAt":"2025-12-25T08:53:30.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"Could you please add the GitHub link? Thanks a lot! \nhttps://github.com/stepfun-ai/StepDeepResearch","html":"
\n","updatedAt":"2025-12-25T09:13:24.425Z","author":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","fullname":"taesiri","name":"taesiri","type":"user","isPro":true,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":235,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.6595590114593506},"editors":["taesiri"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg"],"reactions":[{"reaction":"π","users":["ccchen1006"],"count":1}],"isReport":false,"parentCommentId":"694b513c6c32517d14f0fbb5"}}]},{"id":"694f0f4c785ac06cb1d374bd","author":{"_id":"65243980050781c16f234f1f","avatarUrl":"/avatars/743a009681d5d554c27e04300db9f267.svg","fullname":"Avi","name":"avahal","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":3,"isUserFollowing":false},"createdAt":"2025-12-26T22:42:20.000Z","type":"comment","data":{"edited":false,"hidden":false,"latest":{"raw":"arXiv lens breakdown of this paper π https://arxivlens.com/PaperView/Details/step-deepresearch-technical-report-1855-b4852a8e\n- Executive Summary\n- Detailed Breakdown\n- Practical Applications","html":"
\n","updatedAt":"2025-12-26T22:42:20.272Z","author":{"_id":"65243980050781c16f234f1f","avatarUrl":"/avatars/743a009681d5d554c27e04300db9f267.svg","fullname":"Avi","name":"avahal","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":3,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7063459157943726},"editors":["avahal"],"editorAvatarUrls":["/avatars/743a009681d5d554c27e04300db9f267.svg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2512.20491","authors":[{"_id":"694b5132746a34b55dd53c4e","name":"Chen Hu","hidden":false},{"_id":"694b5132746a34b55dd53c4f","name":"Haikuo Du","hidden":false},{"_id":"694b5132746a34b55dd53c50","name":"Heng Wang","hidden":false},{"_id":"694b5132746a34b55dd53c51","name":"Lin Lin","hidden":false},{"_id":"694b5132746a34b55dd53c52","name":"Mingrui Chen","hidden":false},{"_id":"694b5132746a34b55dd53c53","name":"Peng Liu","hidden":false},{"_id":"694b5132746a34b55dd53c54","name":"Ruihang Miao","hidden":false},{"_id":"694b5132746a34b55dd53c55","name":"Tianchi Yue","hidden":false},{"_id":"694b5132746a34b55dd53c56","name":"Wang You","hidden":false},{"_id":"694b5132746a34b55dd53c57","name":"Wei Ji","hidden":false},{"_id":"694b5132746a34b55dd53c58","name":"Wei Yuan","hidden":false},{"_id":"694b5132746a34b55dd53c59","name":"Wenjin Deng","hidden":false},{"_id":"694b5132746a34b55dd53c5a","name":"Xiaojian Yuan","hidden":false},{"_id":"694b5132746a34b55dd53c5b","user":{"_id":"67f33b43ccb05db5f0190cf6","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/c-UeSyHfO7QchwNXW9mgu.png","isPro":false,"fullname":"ZhangXiaoyun","user":"DadaCloud01","type":"user"},"name":"Xiaoyun Zhang","status":"claimed_verified","statusLastChangedAt":"2025-12-29T14:24:55.909Z","hidden":false},{"_id":"694b5132746a34b55dd53c5c","name":"Xiangyu Liu","hidden":false},{"_id":"694b5132746a34b55dd53c5d","user":{"_id":"6596ca41b1a78672691f9560","avatarUrl":"/avatars/ee91aa28fbec0a3090472006ba1bc04f.svg","isPro":false,"fullname":"Liu Xikai","user":"KaneAllen","type":"user"},"name":"Xikai Liu","status":"claimed_verified","statusLastChangedAt":"2025-12-29T14:24:52.962Z","hidden":false},{"_id":"694b5132746a34b55dd53c5e","name":"Yanming Xu","hidden":false},{"_id":"694b5132746a34b55dd53c5f","name":"Yicheng Cao","hidden":false},{"_id":"694b5132746a34b55dd53c60","name":"Yifei Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c61","name":"Yongyao Wang","hidden":false},{"_id":"694b5132746a34b55dd53c62","name":"Yubo Shu","hidden":false},{"_id":"694b5132746a34b55dd53c63","name":"Yurong Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c64","name":"Yuxiang Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c65","name":"Zheng Gong","hidden":false},{"_id":"694b5132746a34b55dd53c66","name":"Zhichao Chang","hidden":false},{"_id":"694b5132746a34b55dd53c67","name":"Binyan Li","hidden":false},{"_id":"694b5132746a34b55dd53c68","name":"Dan Ma","hidden":false},{"_id":"694b5132746a34b55dd53c69","name":"Furong Jia","hidden":false},{"_id":"694b5132746a34b55dd53c6a","name":"Hongyuan Wang","hidden":false},{"_id":"694b5132746a34b55dd53c6b","name":"Jiayu Liu","hidden":false},{"_id":"694b5132746a34b55dd53c6c","name":"Jing Bai","hidden":false},{"_id":"694b5132746a34b55dd53c6d","name":"Junlan Liu","hidden":false},{"_id":"694b5132746a34b55dd53c6e","name":"Manjiao Liu","hidden":false},{"_id":"694b5132746a34b55dd53c6f","name":"Na Wang","hidden":false},{"_id":"694b5132746a34b55dd53c70","name":"Qiuping Wu","hidden":false},{"_id":"694b5132746a34b55dd53c71","name":"Qinxin Du","hidden":false},{"_id":"694b5132746a34b55dd53c72","name":"Shiwei Li","hidden":false},{"_id":"694b5132746a34b55dd53c73","name":"Wen Sun","hidden":false},{"_id":"694b5132746a34b55dd53c74","name":"Yifeng Gong","hidden":false},{"_id":"694b5132746a34b55dd53c75","name":"Yonglin Chen","hidden":false},{"_id":"694b5132746a34b55dd53c76","name":"Yuling Zhao","hidden":false},{"_id":"694b5132746a34b55dd53c77","name":"Yuxuan Lin","hidden":false},{"_id":"694b5132746a34b55dd53c78","name":"Ziqi Ren","hidden":false},{"_id":"694b5132746a34b55dd53c79","name":"Zixuan Wang","hidden":false},{"_id":"694b5132746a34b55dd53c7a","name":"Aihu Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c7b","name":"Brian Li","hidden":false},{"_id":"694b5132746a34b55dd53c7c","name":"Buyun Ma","hidden":false},{"_id":"694b5132746a34b55dd53c7d","name":"Kang An","hidden":false},{"_id":"694b5132746a34b55dd53c7e","name":"Li Xie","hidden":false},{"_id":"694b5132746a34b55dd53c7f","name":"Mingliang Li","hidden":false},{"_id":"694b5132746a34b55dd53c80","name":"Pan Li","hidden":false},{"_id":"694b5132746a34b55dd53c81","name":"Shidong Yang","hidden":false},{"_id":"694b5132746a34b55dd53c82","name":"Xi Chen","hidden":false},{"_id":"694b5132746a34b55dd53c83","name":"Xiaojia Liu","hidden":false},{"_id":"694b5132746a34b55dd53c84","name":"Yuchu Luo","hidden":false},{"_id":"694b5132746a34b55dd53c85","name":"Yuan Song","hidden":false},{"_id":"694b5132746a34b55dd53c86","name":"YuanHao Ding","hidden":false},{"_id":"694b5132746a34b55dd53c87","name":"Yuanwei Liang","hidden":false},{"_id":"694b5132746a34b55dd53c88","name":"Zexi Li","hidden":false},{"_id":"694b5132746a34b55dd53c89","name":"Zhaoning Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c8a","name":"Zixin Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c8b","name":"Binxing Jiao","hidden":false},{"_id":"694b5132746a34b55dd53c8c","name":"Daxin Jiang","hidden":false},{"_id":"694b5132746a34b55dd53c8d","name":"Jiansheng Chen","hidden":false},{"_id":"694b5132746a34b55dd53c8e","name":"Jing Li","hidden":false},{"_id":"694b5132746a34b55dd53c8f","name":"Xiangyu Zhang","hidden":false},{"_id":"694b5132746a34b55dd53c90","name":"Yibo Zhu","hidden":false}],"publishedAt":"2025-12-23T16:32:27.000Z","submittedOnDailyAt":"2025-12-24T00:04:36.581Z","title":"Step-DeepResearch Technical Report","submittedOnDailyBy":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},"summary":"As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.","upvotes":86,"discussionId":"694b5132746a34b55dd53c91","githubRepo":"https://github.com/stepfun-ai/StepDeepResearch","githubRepoAddedBy":"user","ai_summary":"Step-DeepResearch, an end-to-end agent enhanced with a data synthesis strategy and progressive training, achieves expert-level capabilities in deep research scenarios, outperforming established models.","ai_keywords":["Deep Research","BrowseComp","Step-DeepResearch","Data Synthesis Strategy","Atomic Capabilities","agentic mid-training","SFT","RL","Checklist-style Judger","ADR-Bench","Scale AI Research Rubrics","OpenAI","Gemini DeepResearch"],"githubStars":504,"organization":{"_id":"66e43eae9d477f566f937935","name":"stepfun-ai","fullname":"StepFun","avatar":"https://cdn-uploads.huggingface.co/production/uploads/66935cee39002fc0569c2943/Qv8QPbkgoKE3wR4jTzHiy.png"}},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"6463554dd2044cd1d7c6e0bf","avatarUrl":"/avatars/d7653623117268c545a7063fec69664b.svg","isPro":false,"fullname":"Bingzheng Wei","user":"Bingzheng","type":"user"},{"_id":"63c1699e40a26dd2db32400d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63c1699e40a26dd2db32400d/3N0-Zp8igv8-52mXAdiiq.jpeg","isPro":false,"fullname":"Chroma","user":"Chroma111","type":"user"},{"_id":"620783f24e28382272337ba4","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/620783f24e28382272337ba4/zkUveQPNiDfYjgGhuFErj.jpeg","isPro":false,"fullname":"GuoLiangTang","user":"Tommy930","type":"user"},{"_id":"655e4c26d5c0d3db535cdd66","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/655e4c26d5c0d3db535cdd66/7gUJ8urq7mEZ4OE4ppQCj.png","isPro":false,"fullname":"Lincoln","user":"Presidentlin","type":"user"},{"_id":"65377c30e48353201e6fdda0","avatarUrl":"/avatars/a8f803b6f2e598eaee9c52c0d2ddfc16.svg","isPro":false,"fullname":"Jiaheng Liu","user":"CheeryLJH","type":"user"},{"_id":"6682497fe365c0f666ff1149","avatarUrl":"/avatars/ba32c978761ef7ac8cc467184b8441a4.svg","isPro":false,"fullname":"Xinyao Liao","user":"leoisufa","type":"user"},{"_id":"630443483926de1f7ec6bda0","avatarUrl":"/avatars/e8e95ab0d03f58c61846ccc1318502fe.svg","isPro":false,"fullname":"Rui Wang","user":"budui","type":"user"},{"_id":"6540a5fd001b872f8fd70a3c","avatarUrl":"/avatars/05a7ef4b0b82b7722a9fab545ffd5351.svg","isPro":false,"fullname":"SelfSoda","user":"SelfSoda","type":"user"},{"_id":"65ab85b968139e3c42c6c50d","avatarUrl":"/avatars/fe35f055ecc49412b086a9a5513a11a8.svg","isPro":false,"fullname":"Jingwei Wu","user":"jingwwu","type":"user"},{"_id":"647953b2a68454566355f2e8","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/SyHeSEp8VOizqeVs7EyXN.png","isPro":false,"fullname":"Pengtian Zhu","user":"Zupiter","type":"user"},{"_id":"684d57f26e04c265777ead3f","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/cuOj-bQqukSZreXgUJlfm.png","isPro":false,"fullname":"Joakim Lee","user":"Reinforcement4All","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":2,"organization":{"_id":"66e43eae9d477f566f937935","name":"stepfun-ai","fullname":"StepFun","avatar":"https://cdn-uploads.huggingface.co/production/uploads/66935cee39002fc0569c2943/Qv8QPbkgoKE3wR4jTzHiy.png"}}">
Step-DeepResearch, an end-to-end agent enhanced with a data synthesis strategy and progressive training, achieves expert-level capabilities in deep research scenarios, outperforming established models.
AI-generated summary
As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.
As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.
Many thanks for @taesiri's contributions. It appears the latest version has been updated on arXiv. Could you please help update the corresponding paper version on Hugging Face?"