Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - KnowMe-Bench: Benchmarking Person Understanding for Lifelong Digital Companions
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2026-01-15T01:38:27.971Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.7132441997528076},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2601.04745","authors":[{"_id":"6964724e138cc47cbd765325","user":{"_id":"68e4ba9bb3738c567535654e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/68e4ba9bb3738c567535654e/DmkMgEaKb3N3bnbJYk1cC.png","isPro":false,"fullname":"wu","user":"realty2333","type":"user"},"name":"Tingyu Wu","status":"claimed_verified","statusLastChangedAt":"2026-01-14T09:53:39.763Z","hidden":false},{"_id":"6964724e138cc47cbd765326","user":{"_id":"692d850486aa9dfeebcf10b5","avatarUrl":"/avatars/6f7782844275f3eec7d8466fab787923.svg","isPro":false,"fullname":"Zhisheng Chen","user":"Zhisheng888","type":"user"},"name":"Zhisheng Chen","status":"admin_assigned","statusLastChangedAt":"2026-01-14T12:49:43.502Z","hidden":false},{"_id":"6964724e138cc47cbd765327","name":"Ziyan Weng","hidden":false},{"_id":"6964724e138cc47cbd765328","user":{"_id":"6776ce2f10eb0715dbb89df6","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/GH7VYlzgdrUEDlQfW60Ez.png","isPro":false,"fullname":"Shuhe Wangv2","user":"Super-shuhe-v2","type":"user"},"name":"Shuhe Wang","status":"admin_assigned","statusLastChangedAt":"2026-01-14T12:49:52.050Z","hidden":false},{"_id":"6964724e138cc47cbd765329","user":{"_id":"6411c9c71d87842eedc5ad23","avatarUrl":"/avatars/b8a06aeafbbf7272a831534c2307d65e.svg","isPro":false,"fullname":"Chenglong Li","user":"ChenglongLi","type":"user"},"name":"Chenglong Li","status":"admin_assigned","statusLastChangedAt":"2026-01-14T12:49:57.344Z","hidden":false},{"_id":"6964724e138cc47cbd76532a","user":{"_id":"65562edfb7bad186e877c724","avatarUrl":"/avatars/bb91f42b102e113208bbe3238916a015.svg","isPro":false,"fullname":"zhangshuo","user":"mcflurryshuoz","type":"user"},"name":"Shuo Zhang","status":"claimed_verified","statusLastChangedAt":"2026-01-15T15:06:18.485Z","hidden":false},{"_id":"6964724e138cc47cbd76532b","name":"Sen Hu","hidden":false},{"_id":"6964724e138cc47cbd76532c","name":"Silin Wu","hidden":false},{"_id":"6964724e138cc47cbd76532d","user":{"_id":"68f287f2faba6f123f8a3b3c","avatarUrl":"/avatars/58a34b0f45bb34d74f86a638eff7dc94.svg","isPro":false,"fullname":"Qizhen Lan","user":"lanqz7766","type":"user"},"name":"Qizhen Lan","status":"admin_assigned","statusLastChangedAt":"2026-01-14T12:50:03.306Z","hidden":false},{"_id":"6964724e138cc47cbd76532e","user":{"_id":"6603d56ab4344a2b07cd6d21","avatarUrl":"/avatars/1569bb60166532317c85e80da722ba1c.svg","isPro":false,"fullname":"Huacan Wang","user":"Huacan-Wang","type":"user"},"name":"Huacan Wang","status":"admin_assigned","statusLastChangedAt":"2026-01-14T12:50:08.549Z","hidden":false},{"_id":"6964724e138cc47cbd76532f","user":{"_id":"6874f7f0f8e67e9b5714adf2","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/g2bltqJmCR7MY3zEaQHr6.png","isPro":false,"fullname":"RongHao Chen","user":"SuPA4ki","type":"user"},"name":"Ronghao Chen","status":"admin_assigned","statusLastChangedAt":"2026-01-14T12:50:13.928Z","hidden":false}],"publishedAt":"2026-01-08T09:11:33.000Z","submittedOnDailyAt":"2026-01-14T05:31:09.992Z","title":"KnowMe-Bench: Benchmarking Person Understanding for Lifelong Digital Companions","submittedOnDailyBy":{"_id":"64084fa192033c150738e4f2","avatarUrl":"/avatars/dfff2216eb235c635e5abe6fda3084f0.svg","isPro":false,"fullname":"Yu_xm","user":"Yu2020","type":"user"},"summary":"Existing long-horizon memory benchmarks mostly use multi-turn dialogues or synthetic user histories, which makes retrieval performance an imperfect proxy for person understanding. We present \\BenchName, a publicly releasable benchmark built from long-form autobiographical narratives, where actions, context, and inner thoughts provide dense evidence for inferring stable motivations and decision principles. \\BenchName~reconstructs each narrative into a flashback-aware, time-anchored stream and evaluates models with evidence-linked questions spanning factual recall, subjective state attribution, and principle-level reasoning. Across diverse narrative sources, retrieval-augmented systems mainly improve factual accuracy, while errors persist on temporally grounded explanations and higher-level inferences, highlighting the need for memory mechanisms beyond retrieval. Our data is in KnowMeBench{https://github.com/QuantaAlpha/KnowMeBench}.","upvotes":58,"discussionId":"6964724f138cc47cbd765330","githubRepo":"https://github.com/QuantaAlpha/KnowMeBench","githubRepoAddedBy":"user","ai_summary":"Long-horizon memory benchmarks based on autobiographical narratives evaluate models' ability to infer stable motivations and decision principles through evidence-linked questions spanning factual recall, subjective state attribution, and principle-level reasoning.","ai_keywords":["memory benchmarks","autobiographical narratives","retrieval-augmented systems","factual recall","subjective state attribution","principle-level reasoning"],"githubStars":117,"organization":{"_id":"68b33ab6a9ed99140481cf44","name":"QuantaAlpha","fullname":"QuantaAlpha","avatar":"https://cdn-uploads.huggingface.co/production/uploads/63f7767fbd28622c9b9915e9/DRN8PvmnpKmn2MSLQ7qhF.jpeg"}},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"66a0ab4923e426e19db92773","avatarUrl":"/avatars/19517dd085a3e48e644613ca0b2c3753.svg","isPro":false,"fullname":"ronghaochen","user":"cristiano28","type":"user"},{"_id":"692881094c3f4293dfe29e3d","avatarUrl":"/avatars/bddfaae8041a45498d46ef65ba17c920.svg","isPro":false,"fullname":"qihao wang","user":"jimson991","type":"user"},{"_id":"671b8b4d2eeb8de1c153aaa4","avatarUrl":"/avatars/9d11e80e79e817e01d2d7a032b186b98.svg","isPro":false,"fullname":"Xiaoba","user":"Xiaoba123","type":"user"},{"_id":"66260fa6eb729227ec6c002a","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/66260fa6eb729227ec6c002a/bwhhv6xkP7M9YbCOXDpp1.jpeg","isPro":false,"fullname":"Heng Lian","user":"Pixelieee","type":"user"},{"_id":"692d850486aa9dfeebcf10b5","avatarUrl":"/avatars/6f7782844275f3eec7d8466fab787923.svg","isPro":false,"fullname":"Zhisheng Chen","user":"Zhisheng888","type":"user"},{"_id":"662911a202f5ad9a5195932f","avatarUrl":"/avatars/3c7db9bf9c1d95360b62fe4f56ee9c3a.svg","isPro":false,"fullname":"Tu Hu","user":"Blackteaxxx","type":"user"},{"_id":"64084fa192033c150738e4f2","avatarUrl":"/avatars/dfff2216eb235c635e5abe6fda3084f0.svg","isPro":false,"fullname":"Yu_xm","user":"Yu2020","type":"user"},{"_id":"68e4ba9bb3738c567535654e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/68e4ba9bb3738c567535654e/DmkMgEaKb3N3bnbJYk1cC.png","isPro":false,"fullname":"wu","user":"realty2333","type":"user"},{"_id":"676e3120aeae4cac1577daeb","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/i_xUSDbzbxPPB9rSqs1eV.png","isPro":false,"fullname":"zhengzhenkun","user":"akun-bupt","type":"user"},{"_id":"67c08207cd6b906a0d03a39b","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/67c08207cd6b906a0d03a39b/hBnoZ8soyF9BSlU7AgH14.jpeg","isPro":false,"fullname":"AbstractionLayer","user":"SatoHaruto","type":"user"},{"_id":"67b18f3836b9713b3e09e015","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/67b18f3836b9713b3e09e015/njQNs9VF05MQvySDX6yg1.png","isPro":false,"fullname":"haiy bai","user":"Warsun","type":"user"},{"_id":"67b0a2d9e2883deef7246748","avatarUrl":"/avatars/4a478f37b6e605cb9cf806b4558121fa.svg","isPro":false,"fullname":"Hyunwoo","user":"CHyunwoo","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0,"organization":{"_id":"68b33ab6a9ed99140481cf44","name":"QuantaAlpha","fullname":"QuantaAlpha","avatar":"https://cdn-uploads.huggingface.co/production/uploads/63f7767fbd28622c9b9915e9/DRN8PvmnpKmn2MSLQ7qhF.jpeg"}}">
Long-horizon memory benchmarks based on autobiographical narratives evaluate models' ability to infer stable motivations and decision principles through evidence-linked questions spanning factual recall, subjective state attribution, and principle-level reasoning.
AI-generated summary
Existing long-horizon memory benchmarks mostly use multi-turn dialogues or synthetic user histories, which makes retrieval performance an imperfect proxy for person understanding. We present \BenchName, a publicly releasable benchmark built from long-form autobiographical narratives, where actions, context, and inner thoughts provide dense evidence for inferring stable motivations and decision principles. \BenchName~reconstructs each narrative into a flashback-aware, time-anchored stream and evaluates models with evidence-linked questions spanning factual recall, subjective state attribution, and principle-level reasoning. Across diverse narrative sources, retrieval-augmented systems mainly improve factual accuracy, while errors persist on temporally grounded explanations and higher-level inferences, highlighting the need for memory mechanisms beyond retrieval. Our data is in KnowMeBench{https://github.com/QuantaAlpha/KnowMeBench}.