Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456 Paper page - Action100M: A Large-scale Video Action Dataset
Please give a thumbs up to this comment if you found it helpful!
\n
If you want recommendations for any Paper on Hugging Face checkout this Space
\n
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: \n\n@librarian-bot\n\t recommend
\n","updatedAt":"2026-01-17T01:37:47.506Z","author":{"_id":"63d3e0e8ff1384ce6c5dd17d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg","fullname":"Librarian Bot (Bot)","name":"librarian-bot","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":318,"isUserFollowing":false}},"numEdits":0,"identifiedLanguage":{"language":"en","probability":0.6909293532371521},"editors":["librarian-bot"],"editorAvatarUrls":["https://cdn-avatars.huggingface.co/v1/production/uploads/1674830754237-63d3e0e8ff1384ce6c5dd17d.jpeg"],"reactions":[],"isReport":false}}],"primaryEmailConfirmed":false,"paper":{"id":"2601.10592","authors":[{"_id":"6969b18332f0333869ff9484","user":{"_id":"630491107424d937fa3258be","avatarUrl":"/avatars/b8bd81bc8544674ee26b78702afdb87c.svg","isPro":true,"fullname":"Delong Chen","user":"chendelong","type":"user"},"name":"Delong Chen","status":"claimed_verified","statusLastChangedAt":"2026-01-16T14:37:03.915Z","hidden":false},{"_id":"6969b18332f0333869ff9485","user":{"_id":"67a4de92a41dcedc1632eb43","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/rKpXABi8RqSeRh2RXBlZU.png","isPro":false,"fullname":"Tejaswi Kasarla","user":"tkasarla","type":"user"},"name":"Tejaswi Kasarla","status":"admin_assigned","statusLastChangedAt":"2026-01-16T15:52:21.274Z","hidden":false},{"_id":"6969b18332f0333869ff9486","user":{"_id":"6566fd7447b037bd21f4147e","avatarUrl":"/avatars/c0da0ace33c6c163ec5fa5a866e1296b.svg","isPro":false,"fullname":"Yejin Bang","user":"yjbang","type":"user"},"name":"Yejin Bang","status":"claimed_verified","statusLastChangedAt":"2026-01-21T09:25:09.737Z","hidden":false},{"_id":"6969b18332f0333869ff9487","user":{"_id":"62bdeedd01dc22b4d22a371e","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/62bdeedd01dc22b4d22a371e/ahbK9Ehurx1TgQAVw1TcS.jpeg","isPro":false,"fullname":"Mustafa Shukor","user":"mshukor","type":"user"},"name":"Mustafa Shukor","status":"admin_assigned","statusLastChangedAt":"2026-01-16T15:52:30.924Z","hidden":false},{"_id":"6969b18332f0333869ff9488","user":{"_id":"681abde923dbf6b59c410214","avatarUrl":"/avatars/f863d0a3d05fc99b29535d797d7a6292.svg","isPro":false,"fullname":"willy Chung","user":"willy1027","type":"user"},"name":"Willy Chung","status":"admin_assigned","statusLastChangedAt":"2026-01-16T15:52:37.777Z","hidden":false},{"_id":"6969b18332f0333869ff9489","name":"Jade Yu","hidden":false},{"_id":"6969b18332f0333869ff948a","user":{"_id":"65f08f0bcd30f1ed6ea6cbd1","avatarUrl":"/avatars/5eb2c2032dc2054d4ca86665ba0d428c.svg","isPro":false,"fullname":"Allen Bolourchi","user":"allen-ml","type":"user"},"name":"Allen Bolourchi","status":"admin_assigned","statusLastChangedAt":"2026-01-16T15:52:48.723Z","hidden":false},{"_id":"6969b18332f0333869ff948b","user":{"_id":"639111acb73a0f8c02a92844","avatarUrl":"/avatars/58766701471be66fd784bedd319741a4.svg","isPro":false,"fullname":"Theo Moutakanni","user":"TheoM","type":"user"},"name":"Theo Moutakanni","status":"admin_assigned","statusLastChangedAt":"2026-01-16T15:52:55.020Z","hidden":false},{"_id":"6969b18332f0333869ff948c","name":"Pascale Fung","hidden":false}],"mediaUrls":["https://cdn-uploads.huggingface.co/production/uploads/6039478ab3ecf716b1a5fd4d/G3oU0qIaKddVQVgjhv5A2.gif"],"publishedAt":"2026-01-15T17:02:27.000Z","submittedOnDailyAt":"2026-01-16T01:03:48.816Z","title":"Action100M: A Large-scale Video Action Dataset","submittedOnDailyBy":{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},"summary":"Inferring physical actions from visual observations is a fundamental capability for advancing machine intelligence in the physical world. Achieving this requires large-scale, open-vocabulary video action datasets that span broad domains. We introduce Action100M, a large-scale dataset constructed from 1.2M Internet instructional videos (14.6 years of duration), yielding O(100 million) temporally localized segments with open-vocabulary action supervision and rich captions. Action100M is generated by a fully automated pipeline that (i) performs hierarchical temporal segmentation using V-JEPA 2 embeddings, (ii) produces multi-level frame and segment captions organized as a Tree-of-Captions, and (iii) aggregates evidence with a reasoning model (GPT-OSS-120B) under a multi-round Self-Refine procedure to output structured annotations (brief/detailed action, actor, brief/detailed caption). Training VL-JEPA on Action100M demonstrates consistent data-scaling improvements and strong zero-shot performance across diverse action recognition benchmarks, establishing Action100M as a new foundation for scalable research in video understanding and world modeling.","upvotes":29,"discussionId":"6969b18332f0333869ff948d","githubRepo":"https://github.com/facebookresearch/Action100M","githubRepoAddedBy":"user","ai_summary":"Action100M is a large-scale video action dataset constructed from internet instructional videos using automated pipelines with V-JEPA embeddings and GPT-based reasoning for structured annotations.","ai_keywords":["Action100M","V-JEPA","Tree-of-Captions","GPT-OSS-120B","Self-Refine","video action recognition","zero-shot performance","data-scaling improvements"],"githubStars":404,"organization":{"_id":"66b54027408752ae16404b05","name":"metaresearch","fullname":"Meta Research","avatar":"https://cdn-uploads.huggingface.co/production/uploads/66b25f3f58babfaeb76112dc/2GmiaF075AZ7BcE538oPk.png"}},"canReadDatabase":false,"canManagePapers":false,"canSubmit":false,"hasHfLevelAccess":false,"upvoted":false,"upvoters":[{"_id":"6039478ab3ecf716b1a5fd4d","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6039478ab3ecf716b1a5fd4d/_Thy4E7taiSYBLKxEKJbT.jpeg","isPro":true,"fullname":"taesiri","user":"taesiri","type":"user"},{"_id":"63e202f352b7578dba448ab5","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63e202f352b7578dba448ab5/8itVBLcv14m7OVsoF8h1o.jpeg","isPro":false,"fullname":"Kaicheng Yang","user":"Kaichengalex","type":"user"},{"_id":"652ce0d4c543a08aa92e010f","avatarUrl":"/avatars/7978304e3fe99b0d4d0712441c6a24f3.svg","isPro":false,"fullname":"Haoyu Guo","user":"ghy0324","type":"user"},{"_id":"6538764e9c474315d73c9426","avatarUrl":"/avatars/cc959caef6e4f87931e078ba90f6e423.svg","isPro":false,"fullname":"Tran Tuan Huy","user":"HuyTT","type":"user"},{"_id":"671618d2c6f6570d4f513004","avatarUrl":"/avatars/6ac6577d110731a1e8e3d56b9018fc86.svg","isPro":false,"fullname":"LiangYao","user":"1e12Leon","type":"user"},{"_id":"68e89fc2098a95a3b0a6369b","avatarUrl":"/avatars/4f5e94225ffac574d73df0495154b377.svg","isPro":false,"fullname":"Qi Wong","user":"wong-qi-1234","type":"user"},{"_id":"670a5c886f31d354bc8c1cd1","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/670a5c886f31d354bc8c1cd1/D2Mueg9eQy4fzJhOmCrnu.jpeg","isPro":false,"fullname":"Wenzheng Zeng","user":"wenzhengzeng","type":"user"},{"_id":"624ac233c04d55ec0f42b11e","avatarUrl":"/avatars/58a9abce945e71a65abc8a54085de6d7.svg","isPro":false,"fullname":"oh sehun","user":"sehun","type":"user"},{"_id":"6270324ebecab9e2dcf245de","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6270324ebecab9e2dcf245de/cMbtWSasyNlYc9hvsEEzt.jpeg","isPro":false,"fullname":"Kye Gomez","user":"kye","type":"user"},{"_id":"696a97eb54453892ee130070","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/gaHwMDNPcm-BSuKgD4PLr.png","isPro":false,"fullname":"Martha Deeks","user":"MarthaDeeks","type":"user"},{"_id":"66249e5c5e23c3941aa6cb09","avatarUrl":"/avatars/d3f68c2eba04f2698402cc532779a549.svg","isPro":false,"fullname":"Chunjiang Ge","user":"ChunjiangGe","type":"user"},{"_id":"6570450a78d7aca0c361a177","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6570450a78d7aca0c361a177/MX7jHhTQwLs-BvYIu5rqb.jpeg","isPro":false,"fullname":"Harold Chen","user":"Harold328","type":"user"}],"acceptLanguages":["*"],"dailyPaperRank":0,"organization":{"_id":"66b54027408752ae16404b05","name":"metaresearch","fullname":"Meta Research","avatar":"https://cdn-uploads.huggingface.co/production/uploads/66b25f3f58babfaeb76112dc/2GmiaF075AZ7BcE538oPk.png"}}">
Action100M is a large-scale video action dataset constructed from internet instructional videos using automated pipelines with V-JEPA embeddings and GPT-based reasoning for structured annotations.
AI-generated summary
Inferring physical actions from visual observations is a fundamental capability for advancing machine intelligence in the physical world. Achieving this requires large-scale, open-vocabulary video action datasets that span broad domains. We introduce Action100M, a large-scale dataset constructed from 1.2M Internet instructional videos (14.6 years of duration), yielding O(100 million) temporally localized segments with open-vocabulary action supervision and rich captions. Action100M is generated by a fully automated pipeline that (i) performs hierarchical temporal segmentation using V-JEPA 2 embeddings, (ii) produces multi-level frame and segment captions organized as a Tree-of-Captions, and (iii) aggregates evidence with a reasoning model (GPT-OSS-120B) under a multi-round Self-Refine procedure to output structured annotations (brief/detailed action, actor, brief/detailed caption). Training VL-JEPA on Action100M demonstrates consistent data-scaling improvements and strong zero-shot performance across diverse action recognition benchmarks, establishing Action100M as a new foundation for scalable research in video understanding and world modeling.