Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
Fusion energy gain factorとは - わかりやすく解説 Weblio辞書
[go: Go Back, main page]

Fusion energy gain factorとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Fusion energy gain factorの意味・解説 

エネルギー増倍率

(Fusion energy gain factor から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/30 06:37 UTC 版)

エネルギー増倍率(エネルギーぞうばいりつ、Fusion_energy_gain_factor)、核融合エネルギー増倍率(かくゆうごうエネルギーぞうばいりつ)とは、通常Qという記号で表され、核融合炉で生成される核融合出力と、プラズマを定常状態に維持するのに必要な出力の比である。

Q値と呼ばれる。

解説

核融合反応によって放出される出力と必要とされる加熱出力が等しくなるQ = 1の状態はブレークイーブン、あるいは資料によっては科学的ブレークイーブンと呼ばれる。

核融合反応によって放出されたエネルギーは、燃料に吸収され、自己加熱に繋がる可能性がある。ほとんどの核融合反応は、エネルギーの少なくとも一部はプラズマ内に閉じ込められずに外部に放出されるため、Q = 1の系は外部からの加熱がないと冷却されることになる。典型的な核融合燃料では、少なくともQ ≈ 5を超えないと、自己加熱が外部加熱と同程度にならないだろう。Qがこの点を超えて上昇すれば、自己加熱の増大により、最終的には外部加熱の必要性がなくなる。この時点で反応は自立的に維持できるようになり、イグニッション(点火)と呼ばれる状態になり、一般に、実用的な核融合炉の設計としては非常に望ましいとされている。イグニッションは無限のQに相当する。

その後、いくつかの関連用語が核融合の辞書に載るようになった。 燃料に吸収されなかったエネルギーは、外部で回収して電気を作ることができる。その電気は、プラズマを運転温度まで加熱するのに使うことができる。このように自力で電力を供給するシステムは、工学的ブレークイーブンで運転されているとされる。工学的ブレークイーブンを超えて稼働している場合、消費量よりも多くの電力を生産し、その余剰分を売ることができる。運転コストを賄うだけの電力を販売できるものは、経済的ブレークイーブンと呼ばれることがある。さらに実験段階では、核融合の燃料、特にトリチウムが非常に高価であるため、水素や重水素だけを使って行われる。これらの燃料で運転され、トリチウムが導入された場合にはブレークイーブンの条件に達するだろう炉は、外挿ブレークイーブンにあると言われる。

1997年以来20年以上、Q の記録はJETのQ = 0.67であった。Qext重水素ガスの実験から外挿したQ値)の記録はJT-60が保持しており、Qext = 1.25で、JETの以前のQext = 1.14をわずかに上回った。2022年12月、国立点火施設は2.05 MJのレーザー加熱から3.15 MJの出力でQ = 1.54に達し、2023年現在も記録を保持している。

概念

Q [注釈 1] は単に、炉内で核融合反応によって放出されるパワーPfusと、通常の運転状態で供給される一定の加熱パワーPheatとの比である。定常運転ではなく、パルス運転を行う設計の場合、生成されたすべての核融合エネルギーをPfusとし、パルスを生成するために消費されたすべてのエネルギーの合計をPheat[注釈 2]とすることで、同じ計算を行うことができる。 しかし、パワー損失を考慮したブレークイーブンの定義もいくつかある。

ブレークイーブン

1955年、ジョン・ローソンがエネルギーバランスのメカニズムを初めて詳細に研究し、当初は機密扱いだったが、1957年の有名な論文で公表した。この論文で彼は、特にハンス・サーリング、ピーター・トーネマン、そしてリチャード・ポストによる総説など、それ以前の研究者による研究を発展させ、さまざまなメカニズムによって失われるパワーの量を詳細に予測し、反応を維持するために必要なエネルギーと比較した[1]。このバランスは今日、ローソン条件として知られている。

成功した核融合炉の設計では、核融合反応によってPfus[注釈 3]と呼ばれるパワーが生成される。また、このエネルギーの一部、Plossがさまざまなメカニズムによって失われるが、そのほとんどが、燃料の炉壁へ対流と、さまざまな形での輻射である。反応を継続させるためには、システムはこれらの損失を補うために追加熱を行わなければならない[2]。そしてPloss = Pheatのとき熱平衡を保つ。

ブレークイーブンの最も基本的な定義は、Q = 1である。[注釈 4]つまり Pfus = Pheatである。

同様の用語と区別するために、この定義を科学的ブレークイーブンと呼ぶ文献もある[3][4]。 しかし、特定の分野、特に慣性閉じ込め核融合の分野で使われる。慣性装置や多くの同様の概念は、平衡を保とうとするのではなく、単に生成されたエネルギーを利用するものである。この場合、Pheatは、直接加熱であろうと、レーザーや磁気圧縮のような他のシステムであろうと、反応生成に必要なすべてのエネルギーを考慮する。[5]

外挿ブレークイーブン

1950年代以降、ほとんどの商業用核融合炉の設計は、重水素と三重水素(トリチウム)を主燃料とするものであった。トリチウムは放射性物質であり、安全上の懸念となり、このような炉の設計と運転のコストを増大させる。[6]

コストを下げるため、多くの実験装置は、トリチウムを除いた水素または重水素のみの試験燃料で運転するように設計されている。この場合、水素または重水素単独で運転した場合の性能に基づいて、D-T燃料で運転した場合に期待される性能を定義するために、外挿ブレークイーブンという用語が使われる。[7]

外挿ブレークイーブンの記録は、科学的ブレークイーブンの記録より若干高い。JETとJT-60は、D-D燃料で運転中に1.25前後の値に達している。JETで行われたD-T燃料の実験では、最大性能は外挿値の約半分である。[8]

工学的ブレークイーブン

もうひとつの関連用語である工学的ブレークイーブンは、炉からエネルギーを取り出し、それを電気エネルギーに変え、その一部を加熱システムに戻す必要性を考慮したものである。[7] 核融合から加熱システムに電気を戻すこの閉ループは、再循環として知られている。この場合、基本的な定義は、これらのプロセスの効率を考慮するために、Pfus側に追加の用語を追加することで変更される。[9]

D-T反応は、エネルギーのほとんどを中性子として放出し、アルファ粒子のような荷電粒子として放出される量はそれより少ない。中性子は電気的に中性であり、どのような磁気閉じ込め核融合(MCF)設計からも飛び出す。また、慣性閉じ込め核融合(ICF)設計に見られるような非常に高い密度にもかかわらず、中性子は容易に燃料の塊から抜け出す。これは、反応による荷電粒子のみが燃料内に捕獲され、自己加熱を起こすことを意味する。荷電粒子の形で放出されるエネルギーの割合をfchとすると、荷電粒子のパワーはPch = fchPfusとなる。この自己加熱プロセスが完全であれば、つまりPchがすべて燃料に吸収されれば、発電に利用できる電力は、((1 − fch)Pfusということになる。[10]

D-T燃料のように、実用的なエネルギーの大半を中性子が担う場合、中性子エネルギーは通常、リチウムが含まれる「ブランケット」に捕獲され、さらに炉燃料に使用されるトリチウムを生産する。様々な発熱反応や吸熱反応により、ブランケットはパワーゲイン係数MRを持つことがある。MRは通常1.1~1.3のオーダーであり、これは少量のエネルギーを追加で生成することを意味する。結果として、周囲に放出され、エネルギー生産に利用できるエネルギーの総量は、PR(炉の正味出力)と呼ばれる。[10]

その後、ブランケットは冷却され、冷却材は従来の蒸気タービンと発電機を駆動する熱交換器で熱交換される。発電された電気は再び加熱システムに供給される。[10] 発電チェーンの各段階には、考慮すべき効率がある。プラズマ加熱システムの場合、 効率

要素
形式

「Fusion energy gain factor」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Fusion energy gain factor」の関連用語

Fusion energy gain factorのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Fusion energy gain factorのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのエネルギー増倍率 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS