Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
criterion 0.2.0 - Docs.rs
[go: Go Back, main page]

criterion 0.2.0

Statistics-driven micro-benchmarking library
use std::collections::BTreeMap;

use stats::Tails;
use stats::bivariate::Data;
use stats::univariate::Sample;
use stats::univariate::{self, mixed};

use estimate::Statistic;
use estimate::{Distributions, Estimates};
use benchmark::BenchmarkConfig;
use {format, fs, plot, Criterion, Estimate};
use error::Result;

// Common comparison procedure
#[cfg_attr(feature = "cargo-clippy", allow(type_complexity))]
pub(crate) fn common(
    id: &str,
    data: Data<f64, f64>,
    avg_times: &Sample<f64>,
    estimates_: &Estimates,
    config: &BenchmarkConfig,
    criterion: &Criterion,
) -> Result<(f64, f64, Estimates, Vec<f64>, Vec<f64>, Vec<f64>, Estimates)> {
    let sample_dir = format!("{}/{}/base/sample.json", criterion.output_directory, id);
    let (iters, times): (Vec<f64>, Vec<f64>) = fs::load(&sample_dir)?;

    let base_estimates: Estimates = fs::load(&format!(
        "{}/{}/base/estimates.json",
        criterion.output_directory, id
    ))?;

    let base_avg_times: Vec<f64> = iters
        .iter()
        .zip(times.iter())
        .map(|(iters, elapsed)| elapsed / iters)
        .collect();
    let base_avg_time_sample = Sample::new(&base_avg_times);

    fs::mkdirp(&format!("{}/{}/both", criterion.output_directory, id))?;
    if criterion.plotting.is_enabled() {
        elapsed!(
            "Plotting both linear regressions",
            plot::both::regression(
                Data::new(&iters, &times),
                &base_estimates,
                data,
                estimates_,
                id,
                format!("{}/{}/both/regression.svg", criterion.output_directory, id),
                None,
                false
            )
        );
        elapsed!(
            "Plotting both estimated PDFs",
            plot::both::pdfs(
                base_avg_time_sample,
                avg_times,
                id,
                format!("{}/{}/both/pdf.svg", criterion.output_directory, id),
                None,
                false
            )
        );
    }

    fs::mkdirp(&format!("{}/{}/change", criterion.output_directory, id))?;
    let (t_statistic, p_statistic) = t_test(id, avg_times, base_avg_time_sample, config, criterion);

    let estimates = estimates(id, avg_times, base_avg_time_sample, config, criterion);
    Ok((
        t_statistic,
        p_statistic,
        estimates,
        iters,
        times,
        base_avg_times.clone(),
        base_estimates,
    ))
}

// Performs a two sample t-test
fn t_test(
    id: &str,
    avg_times: &Sample<f64>,
    base_avg_times: &Sample<f64>,
    config: &BenchmarkConfig,
    criterion: &Criterion,
) -> (f64, f64) {
    let nresamples = config.nresamples;

    let t_statistic = avg_times.t(base_avg_times);
    let t_distribution = elapsed!(
        "Bootstrapping the T distribution",
        mixed::bootstrap(avg_times, base_avg_times, nresamples, |a, b| (a.t(b),))
    ).0;
    let p_value = t_distribution.p_value(t_statistic, &Tails::Two);

    if criterion.plotting.is_enabled() {
        elapsed!(
            "Plotting the T test",
            plot::t_test(
                t_statistic,
                &t_distribution,
                id,
                &criterion.output_directory
            )
        );
    }

    (t_statistic, p_value)
}

// Estimates the relative change in the statistics of the population
fn estimates(
    id: &str,
    avg_times: &Sample<f64>,
    base_avg_times: &Sample<f64>,
    config: &BenchmarkConfig,
    criterion: &Criterion,
) -> Estimates {
    fn stats(a: &Sample<f64>, b: &Sample<f64>) -> (f64, f64) {
        (
            a.mean() / b.mean() - 1.,
            a.percentiles().median() / b.percentiles().median() - 1.,
        )
    }

    let cl = config.confidence_level;
    let nresamples = config.nresamples;
    let threshold = config.noise_threshold;

    let (dist_mean, dist_median) = elapsed!(
        "Bootstrapping the relative statistics",
        univariate::bootstrap(avg_times, base_avg_times, nresamples, stats)
    );

    let mut distributions = Distributions::new();
    distributions.insert(Statistic::Mean, dist_mean);
    distributions.insert(Statistic::Median, dist_median);

    let (mean, median) = stats(avg_times, base_avg_times);
    let mut point_estimates = BTreeMap::new();
    point_estimates.insert(Statistic::Mean, mean);
    point_estimates.insert(Statistic::Median, median);

    let estimates = Estimate::new(&distributions, &point_estimates, cl);

    {
        log_if_err!(fs::save(
            &estimates,
            &format!(
                "{}/{}/change/estimates.json",
                criterion.output_directory, id
            )
        ));
    }

    if criterion.plotting.is_enabled() {
        elapsed!(
            "Plotting the distribution of the relative statistics",
            plot::rel_distributions(
                &distributions,
                &estimates,
                id,
                &criterion.output_directory,
                threshold
            )
        );
    }

    estimates
}