#[cfg(test)]
macro_rules! test {
($ty:ident) => {
mod $ty {
use quickcheck::TestResult;
use univariate::{Sample, mixed, self};
#[quickcheck]
fn mean(size: usize, start: usize, nresamples: usize) -> TestResult {
if let Some(v) = ::test::vec::<$ty>(size, start) {
let sample = Sample::new(&v[start..]);
let means = if nresamples > 0 {
sample.bootstrap(nresamples, |s| (s.mean(),)).0
} else {
return TestResult::discard();
};
let min = sample.min();
let max = sample.max();
TestResult::from_bool(
means.as_slice().len() == nresamples &&
means.as_slice().iter().all(|&x| {
(x > min || relative_eq!(x, min)) &&
(x < max || relative_eq!(x, max))
})
)
} else {
TestResult::discard()
}
}
#[quickcheck]
fn mean_median(size: usize, start: usize, nresamples: usize) -> TestResult {
if let Some(v) = ::test::vec::<$ty>(size, start) {
let sample = Sample::new(&v[start..]);
let (means, medians) = if nresamples > 0 {
sample.bootstrap(nresamples, |s| (s.mean(), s.median()))
} else {
return TestResult::discard();
};
let min = sample.min();
let max = sample.max();
TestResult::from_bool(
means.as_slice().len() == nresamples &&
medians.as_slice().len() == nresamples &&
means.as_slice().iter().all(|&x| {
(x > min || relative_eq!(x, min)) &&
(x < max || relative_eq!(x, max))
}) &&
medians.as_slice().iter().all(|&x| {
(x > min || relative_eq!(x, min)) &&
(x < max || relative_eq!(x, max))
})
)
} else {
TestResult::discard()
}
}
#[quickcheck]
fn mixed_two_sample(
(a_size, a_start): (usize, usize),
(b_size, b_start): (usize, usize),
nresamples: usize,
) -> TestResult {
if let (Some(a), Some(b)) =
(::test::vec::<$ty>(a_size, a_start), ::test::vec::<$ty>(b_size, b_start))
{
let a = Sample::new(&a);
let b = Sample::new(&b);
let distribution = if nresamples > 0 {
mixed::bootstrap(a, b, nresamples, |a, b| (a.mean() - b.mean(),)).0
} else {
return TestResult::discard();
};
let min = <$ty>::min(a.min() - b.max(), b.min() - a.max());
let max = <$ty>::max(a.max() - b.min(), b.max() - a.min());
TestResult::from_bool(
distribution.as_slice().len() == nresamples &&
distribution.as_slice().iter().all(|&x| {
(x > min || relative_eq!(x, min)) &&
(x < max || relative_eq!(x, max))
})
)
} else {
TestResult::discard()
}
}
#[quickcheck]
fn two_sample(
(a_size, a_start): (usize, usize),
(b_size, b_start): (usize, usize),
nresamples: usize,
) -> TestResult {
if let (Some(a), Some(b)) =
(::test::vec::<$ty>(a_size, a_start), ::test::vec::<$ty>(b_size, b_start))
{
let a = Sample::new(&a[a_start..]);
let b = Sample::new(&b[b_start..]);
let distribution = if nresamples > 0 {
univariate::bootstrap(a, b, nresamples, |a, b| (a.mean() - b.mean(),)).0
} else {
return TestResult::discard();
};
let min = <$ty>::min(a.min() - b.max(), b.min() - a.max());
let max = <$ty>::max(a.max() - b.min(), b.max() - a.min());
TestResult::from_bool(
distribution.as_slice().len() == nresamples &&
distribution.as_slice().iter().all(|&x| {
(x > min || relative_eq!(x, min)) &&
(x < max || relative_eq!(x, max))
})
)
} else {
TestResult::discard()
}
}
}
}
}
#[cfg(test)]
mod test {
test!(f32);
test!(f64);
}
#[cfg(test)]
macro_rules! bench {
($ty:ident) => {
mod $ty {
use stdtest::Bencher;
use univariate::Sample;
const NRESAMPLES: usize = 100_000;
const SAMPLE_SIZE: usize = 100;
#[bench]
fn mean(b: &mut Bencher) {
let v = ::test::vec::<$ty>(SAMPLE_SIZE, 0).unwrap();
let sample = Sample::new(&v);
b.iter(|| {
sample.bootstrap(NRESAMPLES, |s| (s.mean(),))
});
}
}
}
}
#[cfg(test)]
mod bench {
bench!(f32);
bench!(f64);
}