mod bootstrap;
mod percentiles;
mod resamples;
mod sample;
pub mod kde;
pub mod mixed;
pub mod outliers;
use float::Float;
use num_cpus;
use thread_scoped as thread;
use std::cmp;
use tuple::{Tuple, TupledDistributionsBuilder};
use self::resamples::Resamples;
pub use self::percentiles::Percentiles;
pub use self::sample::Sample;
#[cfg_attr(feature = "cargo-clippy", allow(cast_lossless))]
pub fn bootstrap<A, B, T, S>(
a: &Sample<A>,
b: &Sample<B>,
nresamples: usize,
statistic: S,
) -> T::Distributions
where
A: Float,
B: Float,
S: Fn(&Sample<A>, &Sample<B>) -> T,
S: Sync,
T: Tuple,
T::Distributions: Send,
T::Builder: Send,
{
let ncpus = num_cpus::get();
unsafe {
if true {
let granularity = nresamples / ncpus + 1;
let granularity_sqrt = (granularity as f64).sqrt().ceil() as usize;
let statistic = &statistic;
let mut cutoff = 0;
let chunks = (0..ncpus)
.map(|_| {
let mut sub_distributions: T::Builder =
TupledDistributionsBuilder::new(granularity);
let start = cutoff;
let end = cmp::min(start + granularity, nresamples);
cutoff = end;
thread::scoped(move || {
let mut a_resamples = Resamples::new(a);
let mut b_resamples = Resamples::new(b);
let mut i = start;
for _ in 0..granularity_sqrt {
let a_resample = a_resamples.next();
for _ in 0..granularity_sqrt {
if i == end {
return sub_distributions;
}
let b_resample = b_resamples.next();
sub_distributions.push(statistic(a_resample, b_resample));
i += 1;
}
}
sub_distributions
})
})
.collect::<Vec<_>>();
let mut builder: T::Builder = TupledDistributionsBuilder::new(nresamples);
for chunk in chunks {
builder.extend(&mut (chunk.join()));
}
builder.complete()
} else {
let nresamples_sqrt = (nresamples as f64).sqrt().ceil() as usize;
let mut a_resamples = Resamples::new(a);
let mut b_resamples = Resamples::new(b);
let mut distributions: T::Builder = TupledDistributionsBuilder::new(nresamples);
let mut i = 0;
'outer: for _ in 0..nresamples_sqrt {
let a_resample = a_resamples.next();
for _ in 0..nresamples_sqrt {
if i == nresamples {
break 'outer;
}
let b_resample = b_resamples.next();
distributions.push(statistic(a_resample, b_resample));
i += 1;
}
}
distributions.complete()
}
}
}