Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
clippy 0.0.41 - Docs.rs
[go: Go Back, main page]

clippy 0.0.41

A bunch of helpful lints to avoid common pitfalls in Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
use consts::constant;
use rustc::lint::*;
use rustc_front::hir::*;
use std::hash::{Hash, Hasher, SipHasher};
use syntax::ast::Name;
use syntax::ptr::P;

/// Type used to check whether two ast are the same. This is different from the operator
/// `==` on ast types as this operator would compare true equality with ID and span.
///
/// Note that some expressions kinds are not considered but could be added.
pub struct SpanlessEq<'a, 'tcx: 'a> {
    /// Context used to evaluate constant expressions.
    cx: &'a LateContext<'a, 'tcx>,
    /// If is true, never consider as equal expressions containing fonction calls.
    ignore_fn: bool,
}

impl<'a, 'tcx: 'a> SpanlessEq<'a, 'tcx> {
    pub fn new(cx: &'a LateContext<'a, 'tcx>) -> Self {
        SpanlessEq { cx: cx, ignore_fn: false }
    }

    pub fn ignore_fn(self) -> Self {
        SpanlessEq { cx: self.cx, ignore_fn: true }
    }

    /// Check whether two statements are the same.
    pub fn eq_stmt(&self, left: &Stmt, right: &Stmt) -> bool {
        match (&left.node, &right.node) {
            (&StmtDecl(ref l, _), &StmtDecl(ref r, _)) => {
                if let (&DeclLocal(ref l), &DeclLocal(ref r)) = (&l.node, &r.node) {
                    // TODO: tys
                    l.ty.is_none() && r.ty.is_none() &&
                        both(&l.init, &r.init, |l, r| self.eq_expr(l, r))
                }
                else {
                    false
                }
            }
            (&StmtExpr(ref l, _), &StmtExpr(ref r, _)) |
                (&StmtSemi(ref l, _), &StmtSemi(ref r, _)) => self.eq_expr(l, r),
            _ => false,
        }
    }

    /// Check whether two blocks are the same.
    pub fn eq_block(&self, left: &Block, right: &Block) -> bool {
        over(&left.stmts, &right.stmts, |l, r| self.eq_stmt(l, r)) &&
            both(&left.expr, &right.expr, |l, r| self.eq_expr(l, r))
    }

    // ok, it’s a big function, but mostly one big match with simples cases
    #[allow(cyclomatic_complexity)]
    pub fn eq_expr(&self, left: &Expr, right: &Expr) -> bool {
        if let (Some(l), Some(r)) = (constant(self.cx, left), constant(self.cx, right)) {
            if l == r {
                return true;
            }
        }

        match (&left.node, &right.node) {
            (&ExprAddrOf(lmut, ref le), &ExprAddrOf(rmut, ref re)) => {
                lmut == rmut && self.eq_expr(le, re)
            }
            (&ExprAgain(li), &ExprAgain(ri)) => {
                both(&li, &ri, |l, r| l.node.name.as_str() == r.node.name.as_str())
            }
            (&ExprAssign(ref ll, ref lr), &ExprAssign(ref rl, ref rr)) => {
                self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
            }
            (&ExprAssignOp(ref lo, ref ll, ref lr), &ExprAssignOp(ref ro, ref rl, ref rr)) => {
                lo.node == ro.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
            }
            (&ExprBlock(ref l), &ExprBlock(ref r)) => {
                self.eq_block(l, r)
            }
            (&ExprBinary(lop, ref ll, ref lr), &ExprBinary(rop, ref rl, ref rr)) => {
                lop.node == rop.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr)
            }
            (&ExprBreak(li), &ExprBreak(ri)) => {
                both(&li, &ri, |l, r| l.node.name.as_str() == r.node.name.as_str())
            }
            (&ExprBox(ref l), &ExprBox(ref r)) => {
                self.eq_expr(l, r)
            }
            (&ExprCall(ref lfun, ref largs), &ExprCall(ref rfun, ref rargs)) => {
                !self.ignore_fn &&
                    self.eq_expr(lfun, rfun) &&
                    self.eq_exprs(largs, rargs)
            }
            (&ExprCast(ref lx, ref lt), &ExprCast(ref rx, ref rt)) => {
                self.eq_expr(lx, rx) && self.eq_ty(lt, rt)
            }
            (&ExprField(ref lfexp, ref lfident), &ExprField(ref rfexp, ref rfident)) => {
                lfident.node == rfident.node && self.eq_expr(lfexp, rfexp)
            }
            (&ExprIndex(ref la, ref li), &ExprIndex(ref ra, ref ri)) => {
                self.eq_expr(la, ra) && self.eq_expr(li, ri)
            }
            (&ExprIf(ref lc, ref lt, ref le), &ExprIf(ref rc, ref rt, ref re)) => {
                self.eq_expr(lc, rc) &&
                    self.eq_block(lt, rt) &&
                    both(le, re, |l, r| self.eq_expr(l, r))
            }
            (&ExprLit(ref l), &ExprLit(ref r)) => l.node == r.node,
            (&ExprLoop(ref lb, ref ll), &ExprLoop(ref rb, ref rl)) => {
                self.eq_block(lb, rb) &&
                    both(ll, rl, |l, r| l.name.as_str() == r.name.as_str())

            }
            (&ExprMatch(ref le, ref la, ref ls), &ExprMatch(ref re, ref ra, ref rs)) => {
                ls == rs &&
                    self.eq_expr(le, re) &&
                    over(la, ra, |l, r| {
                        self.eq_expr(&l.body, &r.body) &&
                            both(&l.guard, &r.guard, |l, r| self.eq_expr(l, r)) &&
                            over(&l.pats, &r.pats, |l, r| self.eq_pat(l, r))
                    })
            }
            (&ExprMethodCall(ref lname, ref ltys, ref largs), &ExprMethodCall(ref rname, ref rtys, ref rargs)) => {
                // TODO: tys
                !self.ignore_fn &&
                    lname.node == rname.node &&
                    ltys.is_empty() &&
                    rtys.is_empty() &&
                    self.eq_exprs(largs, rargs)
            }
            (&ExprRange(ref lb, ref le), &ExprRange(ref rb, ref re)) => {
                both(lb, rb, |l, r| self.eq_expr(l, r)) &&
                both(le, re, |l, r| self.eq_expr(l, r))
            }
            (&ExprRepeat(ref le, ref ll), &ExprRepeat(ref re, ref rl)) => {
                self.eq_expr(le, re) && self.eq_expr(ll, rl)
            }
            (&ExprRet(ref l), &ExprRet(ref r)) => {
                both(l, r, |l, r| self.eq_expr(l, r))
            }
            (&ExprPath(ref lqself, ref lsubpath), &ExprPath(ref rqself, ref rsubpath)) => {
                both(lqself, rqself, |l, r| self.eq_qself(l, r)) && self.eq_path(lsubpath, rsubpath)
            }
            (&ExprTup(ref ltup), &ExprTup(ref rtup)) => self.eq_exprs(ltup, rtup),
            (&ExprTupField(ref le, li), &ExprTupField(ref re, ri)) => {
                li.node == ri.node && self.eq_expr(le, re)
            }
            (&ExprUnary(lop, ref le), &ExprUnary(rop, ref re)) => {
                lop == rop && self.eq_expr(le, re)
            }
            (&ExprVec(ref l), &ExprVec(ref r)) => self.eq_exprs(l, r),
            (&ExprWhile(ref lc, ref lb, ref ll), &ExprWhile(ref rc, ref rb, ref rl)) => {
                self.eq_expr(lc, rc) &&
                    self.eq_block(lb, rb) &&
                    both(ll, rl, |l, r| l.name.as_str() == r.name.as_str())
            }
            _ => false,
        }
    }

    fn eq_exprs(&self, left: &[P<Expr>], right: &[P<Expr>]) -> bool {
        over(left, right, |l, r| self.eq_expr(l, r))
    }

    /// Check whether two patterns are the same.
    pub fn eq_pat(&self, left: &Pat, right: &Pat) -> bool {
        match (&left.node, &right.node) {
            (&PatBox(ref l), &PatBox(ref r)) => {
                self.eq_pat(l, r)
            }
            (&PatEnum(ref lp, ref la), &PatEnum(ref rp, ref ra)) => {
                self.eq_path(lp, rp) &&
                    both(la, ra, |l, r| {
                        over(l, r, |l, r| self.eq_pat(l, r))
                    })
            }
            (&PatIdent(ref lb, ref li, ref lp), &PatIdent(ref rb, ref ri, ref rp)) => {
                lb == rb && li.node.name.as_str() == ri.node.name.as_str() &&
                    both(lp, rp, |l, r| self.eq_pat(l, r))
            }
            (&PatLit(ref l), &PatLit(ref r)) => {
                self.eq_expr(l, r)
            }
            (&PatQPath(ref ls, ref lp), &PatQPath(ref rs, ref rp)) => {
                self.eq_qself(ls, rs) && self.eq_path(lp, rp)
            }
            (&PatTup(ref l), &PatTup(ref r)) => {
                over(l, r, |l, r| self.eq_pat(l, r))
            }
            (&PatRange(ref ls, ref le), &PatRange(ref rs, ref re)) => {
                self.eq_expr(ls, rs) &&
                    self.eq_expr(le, re)
            }
            (&PatRegion(ref le, ref lm), &PatRegion(ref re, ref rm)) => {
                lm == rm && self.eq_pat(le, re)
            }
            (&PatVec(ref ls, ref li, ref le), &PatVec(ref rs, ref ri, ref re)) => {
                over(ls, rs, |l, r| self.eq_pat(l, r)) &&
                    over(le, re, |l, r| self.eq_pat(l, r)) &&
                    both(li, ri, |l, r| self.eq_pat(l, r))
            }
            (&PatWild, &PatWild) => true,
            _ => false,
        }
    }

    fn eq_path(&self, left: &Path, right: &Path) -> bool {
        // The == of idents doesn't work with different contexts,
        // we have to be explicit about hygiene
        left.global == right.global &&
        over(&left.segments,
             &right.segments,
             |l, r| l.identifier.name.as_str() == r.identifier.name.as_str() && l.parameters == r.parameters)
    }

    fn eq_qself(&self, left: &QSelf, right: &QSelf) -> bool {
        left.ty.node == right.ty.node && left.position == right.position
    }

    fn eq_ty(&self, left: &Ty, right: &Ty) -> bool {
        match (&left.node, &right.node) {
            (&TyVec(ref lvec), &TyVec(ref rvec)) => self.eq_ty(lvec, rvec),
            (&TyFixedLengthVec(ref lt, ref ll), &TyFixedLengthVec(ref rt, ref rl)) => {
                self.eq_ty(lt, rt) && self.eq_expr(ll, rl)
            }
            (&TyPtr(ref lmut), &TyPtr(ref rmut)) => lmut.mutbl == rmut.mutbl && self.eq_ty(&*lmut.ty, &*rmut.ty),
            (&TyRptr(_, ref lrmut), &TyRptr(_, ref rrmut)) => {
                lrmut.mutbl == rrmut.mutbl && self.eq_ty(&*lrmut.ty, &*rrmut.ty)
            }
            (&TyPath(ref lq, ref lpath), &TyPath(ref rq, ref rpath)) => {
                both(lq, rq, |l, r| self.eq_qself(l, r)) && self.eq_path(lpath, rpath)
            }
            (&TyTup(ref l), &TyTup(ref r)) => over(l, r, |l, r| self.eq_ty(l, r)),
            (&TyInfer, &TyInfer) => true,
            _ => false,
        }
    }
}

/// Check if the two `Option`s are both `None` or some equal values as per `eq_fn`.
fn both<X, F>(l: &Option<X>, r: &Option<X>, mut eq_fn: F) -> bool
    where F: FnMut(&X, &X) -> bool
{
    l.as_ref().map_or_else(|| r.is_none(), |x| r.as_ref().map_or(false, |y| eq_fn(x, y)))
}

/// Check if two slices are equal as per `eq_fn`.
fn over<X, F>(left: &[X], right: &[X], mut eq_fn: F) -> bool
    where F: FnMut(&X, &X) -> bool
{
    left.len() == right.len() && left.iter().zip(right).all(|(x, y)| eq_fn(x, y))
}


/// Type used to hash an ast element. This is different from the `Hash` trait on ast types as this
/// trait would consider IDs and spans.
///
/// All expressions kind are hashed, but some might have a weaker hash.
pub struct SpanlessHash<'a, 'tcx: 'a> {
    /// Context used to evaluate constant expressions.
    cx: &'a LateContext<'a, 'tcx>,
    s: SipHasher,
}

impl<'a, 'tcx: 'a> SpanlessHash<'a, 'tcx> {
    pub fn new(cx: &'a LateContext<'a, 'tcx>) -> Self {
        SpanlessHash { cx: cx, s: SipHasher::new() }
    }

    pub fn finish(&self) -> u64 {
        self.s.finish()
    }

    pub fn hash_block(&mut self, b: &Block) {
        for s in &b.stmts {
            self.hash_stmt(s);
        }

        if let Some(ref e) = b.expr {
            self.hash_expr(e);
        }

        b.rules.hash(&mut self.s);
    }

    pub fn hash_expr(&mut self, e: &Expr) {
        if let Some(e) = constant(self.cx, e) {
            return e.hash(&mut self.s);
        }

        match e.node {
            ExprAddrOf(m, ref e) => {
                let c: fn(_, _) -> _ = ExprAddrOf;
                c.hash(&mut self.s);
                m.hash(&mut self.s);
                self.hash_expr(e);
            }
            ExprAgain(i) => {
                let c: fn(_) -> _ = ExprAgain;
                c.hash(&mut self.s);
                if let Some(i) = i {
                    self.hash_name(&i.node.name);
                }
            }
            ExprAssign(ref l, ref r) => {
                let c: fn(_, _) -> _ = ExprAssign;
                c.hash(&mut self.s);
                self.hash_expr(l);
                self.hash_expr(r);
            }
            ExprAssignOp(ref o, ref l, ref r) => {
                let c: fn(_, _, _) -> _ = ExprAssignOp;
                c.hash(&mut self.s);
                o.hash(&mut self.s);
                self.hash_expr(l);
                self.hash_expr(r);
            }
            ExprBlock(ref b) => {
                let c: fn(_) -> _ = ExprBlock;
                c.hash(&mut self.s);
                self.hash_block(b);
            }
            ExprBinary(op, ref l, ref r) => {
                let c: fn(_, _, _) -> _ = ExprBinary;
                c.hash(&mut self.s);
                op.node.hash(&mut self.s);
                self.hash_expr(l);
                self.hash_expr(r);
            }
            ExprBreak(i) => {
                let c: fn(_) -> _ = ExprBreak;
                c.hash(&mut self.s);
                if let Some(i) = i {
                    self.hash_name(&i.node.name);
                }
            }
            ExprBox(ref e) => {
                let c: fn(_) -> _ = ExprBox;
                c.hash(&mut self.s);
                self.hash_expr(e);
            }
            ExprCall(ref fun, ref args) => {
                let c: fn(_, _) -> _ = ExprCall;
                c.hash(&mut self.s);
                self.hash_expr(fun);
                self.hash_exprs(args);
            }
            ExprCast(ref e, ref _ty) => {
                let c: fn(_, _) -> _ = ExprCast;
                c.hash(&mut self.s);
                self.hash_expr(e);
                // TODO: _ty
            }
            ExprClosure(cap, _, ref b) => {
                let c: fn(_, _, _) -> _ = ExprClosure;
                c.hash(&mut self.s);
                cap.hash(&mut self.s);
                self.hash_block(b);
            }
            ExprField(ref e, ref f) => {
                let c: fn(_, _) -> _ = ExprField;
                c.hash(&mut self.s);
                self.hash_expr(e);
                self.hash_name(&f.node);
            }
            ExprIndex(ref a, ref i) => {
                let c: fn(_, _) -> _ = ExprIndex;
                c.hash(&mut self.s);
                self.hash_expr(a);
                self.hash_expr(i);
            }
            ExprInlineAsm(_) => {
                let c: fn(_) -> _ = ExprInlineAsm;
                c.hash(&mut self.s);
            }
            ExprIf(ref cond, ref t, ref e) => {
                let c: fn(_, _, _) -> _ = ExprIf;
                c.hash(&mut self.s);
                self.hash_expr(cond);
                self.hash_block(t);
                if let Some(ref e) = *e {
                    self.hash_expr(e);
                }
            }
            ExprLit(ref l) => {
                let c: fn(_) -> _ = ExprLit;
                c.hash(&mut self.s);
                l.hash(&mut self.s);
            },
            ExprLoop(ref b, ref i) => {
                let c: fn(_, _) -> _ = ExprLoop;
                c.hash(&mut self.s);
                self.hash_block(b);
                if let Some(i) = *i {
                    self.hash_name(&i.name);
                }
            }
            ExprMatch(ref e, ref arms, ref s) => {
                let c: fn(_, _, _) -> _ = ExprMatch;
                c.hash(&mut self.s);
                self.hash_expr(e);

                for arm in arms {
                    // TODO: arm.pat?
                    if let Some(ref e) = arm.guard {
                        self.hash_expr(e);
                    }
                    self.hash_expr(&arm.body);
                }

                s.hash(&mut self.s);
            }
            ExprMethodCall(ref name, ref _tys, ref args) => {
                let c: fn(_, _, _) -> _ = ExprMethodCall;
                c.hash(&mut self.s);
                self.hash_name(&name.node);
                self.hash_exprs(args);
            }
            ExprRange(ref b, ref e) => {
                let c: fn(_, _) -> _ = ExprRange;
                c.hash(&mut self.s);
                if let Some(ref b) = *b {
                    self.hash_expr(b);
                }
                if let Some(ref e) = *e {
                    self.hash_expr(e);
                }
            }
            ExprRepeat(ref e, ref l) => {
                let c: fn(_, _) -> _ = ExprRepeat;
                c.hash(&mut self.s);
                self.hash_expr(e);
                self.hash_expr(l);
            }
            ExprRet(ref e) => {
                let c: fn(_) -> _ = ExprRet;
                c.hash(&mut self.s);
                if let Some(ref e) = *e {
                    self.hash_expr(e);
                }
            }
            ExprPath(ref _qself, ref subpath) => {
                let c: fn(_, _) -> _ = ExprPath;
                c.hash(&mut self.s);
                self.hash_path(subpath);
            }
            ExprStruct(ref path, ref fields, ref expr) => {
                let c: fn(_, _, _) -> _ = ExprStruct;
                c.hash(&mut self.s);

                self.hash_path(path);

                for f in fields {
                    self.hash_name(&f.name.node);
                    self.hash_expr(&f.expr);
                }

                if let Some(ref e) = *expr {
                    self.hash_expr(e);
                }
            }
            ExprTup(ref tup) => {
                let c: fn(_) -> _ = ExprTup;
                c.hash(&mut self.s);
                self.hash_exprs(tup);
            },
            ExprTupField(ref le, li) => {
                let c: fn(_, _) -> _ = ExprTupField;
                c.hash(&mut self.s);

                self.hash_expr(le);
                li.node.hash(&mut self.s);
            }
            ExprType(_, _) => {
                let c: fn(_, _) -> _ = ExprType;
                c.hash(&mut self.s);
                // what’s an ExprType anyway?
            }
            ExprUnary(lop, ref le) => {
                let c: fn(_, _) -> _ = ExprUnary;
                c.hash(&mut self.s);

                lop.hash(&mut self.s);
                self.hash_expr(le);
            }
            ExprVec(ref v) => {
                let c: fn(_) -> _ = ExprVec;
                c.hash(&mut self.s);

                self.hash_exprs(v);
            },
            ExprWhile(ref cond, ref b, l) => {
                let c: fn(_, _, _) -> _ = ExprWhile;
                c.hash(&mut self.s);

                self.hash_expr(cond);
                self.hash_block(b);
                if let Some(l) = l {
                    self.hash_name(&l.name);
                }
            }
        }
    }

    pub fn hash_exprs(&mut self, e: &[P<Expr>]) {
        for e in e {
            self.hash_expr(e);
        }
    }

    pub fn hash_name(&mut self, n: &Name) {
        n.as_str().hash(&mut self.s);
    }

    pub fn hash_path(&mut self, p: &Path) {
        p.global.hash(&mut self.s);
        for p in &p.segments {
            self.hash_name(&p.identifier.name);
        }
    }

    pub fn hash_stmt(&mut self, b: &Stmt) {
        match b.node {
            StmtDecl(ref _decl, _) => {
                let c: fn(_, _) -> _ = StmtDecl;
                c.hash(&mut self.s);
                // TODO: decl
            }
            StmtExpr(ref expr, _) => {
                let c: fn(_, _) -> _ = StmtExpr;
                c.hash(&mut self.s);
                self.hash_expr(expr);
            }
            StmtSemi(ref expr, _) => {
                let c: fn(_, _) -> _ = StmtSemi;
                c.hash(&mut self.s);
                self.hash_expr(expr);
            }
        }
    }
}