Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
datafusion 0.1.0 - Docs.rs
[go: Go Back, main page]

datafusion 0.1.0

DataFusion is a datasource-agnostic distributed query planning and execution framework for Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright 2018 Grove Enterprises LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashMap;
use std::io::{Error, ErrorKind, Read};
use std::io::{BufReader, BufRead};
use std::io::prelude::*;
use std::iter::Iterator;
use std::fs::File;
use std::path::Path;
use std::string::String;
use std::convert::*;

extern crate csv;

use super::csv::StringRecord;

use super::rel::*;
use super::dataframe::*;

#[derive(Debug)]
pub enum ExecutionError {
    IoError(Error),
    CsvError(csv::Error),
    Custom(String)
}

impl From<Error> for ExecutionError {
    fn from(e: Error) -> Self {
        ExecutionError::IoError(e)
    }
}

/// Represents a csv file with a known schema
#[derive(Debug)]
pub struct CsvRelation {
    file: File,
    schema: TupleType
}

pub struct FilterRelation {
    schema: TupleType,
    input: Box<SimpleRelation>,
    expr: Rex
}

pub struct ProjectRelation {
    schema: TupleType,
    input: Box<SimpleRelation>,
    expr: Vec<Rex>
}

impl<'a> CsvRelation {

    pub fn open(file: File, schema: TupleType) -> Result<Self,ExecutionError> {
        Ok(CsvRelation { file, schema })
    }

    /// Convert StringRecord into our internal tuple type based on the known schema
    fn create_tuple(&self, r: &StringRecord) -> Result<Tuple,ExecutionError> {
        assert_eq!(self.schema.columns.len(), r.len());
        let values = self.schema.columns.iter().zip(r.into_iter()).map(|(c,s)| match c.data_type {
            //TODO: remove unwrap use here
            DataType::UnsignedLong => Value::UnsignedLong(s.parse::<u64>().unwrap()),
            DataType::String => Value::String(s.to_string()),
            DataType::Double => Value::Double(s.parse::<f64>().unwrap()),
        }).collect();
        Ok(Tuple::new(values))
    }
}

/// trait for all relations (a relation is essentially just an iterator over tuples with
/// a known schema)
pub trait SimpleRelation {
    /// scan all records in this relation
    fn scan<'a>(&'a self, ctx: &'a ExecutionContext) -> Box<Iterator<Item=Result<Tuple,ExecutionError>> + 'a>;
    /// get the schema for this relation
    fn schema<'a>(&'a self) -> &'a TupleType;
}

impl SimpleRelation for CsvRelation {

    fn scan<'a>(&'a self, ctx: &'a ExecutionContext) -> Box<Iterator<Item=Result<Tuple,ExecutionError>> + 'a> {

        let buf_reader = BufReader::new(&self.file);
        let csv_reader = csv::Reader::from_reader(buf_reader);
        let record_iter = csv_reader.into_records();

        let tuple_iter = record_iter.map(move|r| match r {
            Ok(record) => self.create_tuple(&record),
            Err(e) => Err(ExecutionError::CsvError(e))
        });

        Box::new(tuple_iter)
    }

    fn schema<'a>(&'a self) -> &'a TupleType {
        &self.schema
    }

}

impl SimpleRelation for FilterRelation {

    fn scan<'a>(&'a self, ctx: &'a ExecutionContext) -> Box<Iterator<Item=Result<Tuple, ExecutionError>> + 'a> {
        Box::new(self.input.scan(ctx).filter(move|t|
            match t {
                &Ok(ref tuple) => match ctx.evaluate(tuple, &self.schema, &self.expr) {
                    Ok(Value::Boolean(b)) => b,
                    _ => panic!("Predicate expression evaluated to non-boolean value")
                },
                _ => true // let errors through the filter so they can be handled later
            }
        ))
    }

    fn schema<'a>(&'a self) -> &'a TupleType {
        &self.schema
    }
}

impl SimpleRelation for ProjectRelation {

    fn scan<'a>(&'a self, ctx: &'a ExecutionContext) -> Box<Iterator<Item=Result<Tuple, ExecutionError>> + 'a> {
        let foo = self.input.scan(ctx).map(move|r| match r {
            Ok(tuple) => {
                let values = self.expr.iter()
                    .map(|e| match e {
                        &Rex::TupleValue(i) => tuple.values[i].clone(),
                        //TODO: relation delegating back to execution context seems wrong way around
                        _ => ctx.evaluate(&tuple,&self.schema, e).unwrap() //TODO: remove unwrap
                        //unimplemented!("Unsupported expression for projection")
                    })
                    .collect();
                Ok(Tuple::new(values))
            },
            Err(_) => r
        });

        Box::new(foo)
    }

    fn schema<'a>(&'a self) -> &'a TupleType {
        &self.schema
    }
}

pub trait ScalarFunction {
    fn execute(args: Vec<Value>) -> Value;

}

#[derive(Debug,Clone)]
pub struct ExecutionContext {
    schemas: HashMap<String, TupleType>,
    functions: HashMap<String, FunctionMeta>,

}

impl ExecutionContext {

    pub fn new(schemas: HashMap<String, TupleType>) -> Self {
        ExecutionContext { schemas: schemas, functions: HashMap::new() }
    }

    pub fn define_function(&mut self, fm: FunctionMeta) {
        self.functions.insert(fm.name.to_lowercase(), fm);
    }

    /// Open a CSV file
    ///TODO: this is building a relational plan not an execution plan so shouldn't really be here
    pub fn load(&self, filename: &str, schema: &TupleType) -> Result<Box<DataFrame>, ExecutionError> {
        let plan = Rel::CsvFile { filename: filename.to_string(), schema: schema.clone() };
        Ok(Box::new(DF { ctx: Box::new((*self).clone()), plan: Box::new(plan) }))
    }

    pub fn register_table(&mut self, name: String, schema: TupleType) {
        self.schemas.insert(name, schema);
    }

    pub fn create_execution_plan(&self, plan: &Rel) -> Result<Box<SimpleRelation>,ExecutionError> {
        match *plan {

            Rel::EmptyRelation => {
                panic!()
            },

            Rel::TableScan { ref schema_name, ref table_name, ref schema } => {
                // for now, tables are csv files
                let file = File::open(format!("test/{}.csv", table_name))?;
                let rel = CsvRelation::open(file, schema.clone())?;
                Ok(Box::new(rel))
            },

            Rel::CsvFile { ref filename, ref schema } => {
                let file = File::open(filename)?;
                let rel = CsvRelation::open(file, schema.clone())?;
                Ok(Box::new(rel))
            },

            Rel::Selection { ref expr, ref input, ref schema } => {
                let input_rel = self.create_execution_plan(input)?;
                let rel = FilterRelation {
                    input: input_rel,
                    expr: expr.clone(),
                    schema: schema.clone()
                };
                Ok(Box::new(rel))
            },

            Rel::Projection { ref expr, ref input, ref schema } => {
                let input_rel = self.create_execution_plan(&input)?;
                let input_schema = input_rel.schema().clone();

                //TODO: seems to be duplicate of sql_to_rel code
                let project_columns: Vec<ColumnMeta> = expr.iter().map(|e| {
                    match e {
                        &Rex::TupleValue(i) => input_schema.columns[i].clone(),
                        &Rex::ScalarFunction {ref name, ref args} => ColumnMeta {
                            name: name.clone(),
                            data_type: DataType::Double, //TODO: hard-coded .. no function metadata yet
                            nullable: true
                        },
                        _ => unimplemented!("Unsupported projection expression")
                    }
                }).collect();

                let project_schema = TupleType { columns: project_columns };

                let rel = ProjectRelation {
                    input: input_rel,
                    expr: expr.clone(),
                    schema: project_schema,

                };

                Ok(Box::new(rel))
            }
        }
    }

    /// Evaluate a relational expression against a tuple
    pub fn evaluate(&self, tuple: &Tuple, tt: &TupleType, rex: &Rex) -> Result<Value, Box<ExecutionError>> {

        match rex {
            &Rex::BinaryExpr { ref left, ref op, ref right } => {
                let left_value = self.evaluate(tuple, tt, left)?;
                let right_value = self.evaluate(tuple, tt, right)?;
                match op {
                    &Operator::Eq => Ok(Value::Boolean(left_value == right_value)),
                    &Operator::NotEq => Ok(Value::Boolean(left_value != right_value)),
                    &Operator::Lt => Ok(Value::Boolean(left_value < right_value)),
                    &Operator::LtEq => Ok(Value::Boolean(left_value <= right_value)),
                    &Operator::Gt => Ok(Value::Boolean(left_value > right_value)),
                    &Operator::GtEq => Ok(Value::Boolean(left_value >= right_value)),
                }
            },
            &Rex::TupleValue(index) => Ok(tuple.values[index].clone()),
            &Rex::Literal(ref value) => Ok(value.clone()),
            &Rex::ScalarFunction { ref name, ref args } => {

                //TODO: look up function dynamically in execution context
                //TODO: do arg check first based on function definition (count + types)
                //TODO: function definition and implemenation should be separate things

                // evaluate the arguments to the function
                let arg_values : Vec<Value> = args.iter()
                    .map(|a| self.evaluate(tuple, tt, &a))
                    .collect::<Result<Vec<Value>, Box<ExecutionError>>>()?;

                match name.as_ref() {
                    "sqrt" => {
                        match arg_values[0] {
                            Value::Double(d) => Ok(Value::Double(d.sqrt())),
                            Value::UnsignedLong(l) => Ok(Value::Double((l as f64).sqrt())),
                            _ => Err(Box::new(ExecutionError::Custom("Unsupported arg type for sqrt".to_string())))
                        }

                    },
                    _ => Err(Box::new(ExecutionError::Custom("Unknown function".to_string())))
                }

                //unimplemented!()
            }
        }

    }

}




pub struct DF {
    ctx: Box<ExecutionContext>,
    plan: Box<Rel>
}

impl DataFrame for DF {

    fn repartition(&self, n: u32) -> Result<Box<DataFrame>, DataFrameError> {
        unimplemented!()
    }

    fn select(&self, expr: Vec<Rex>) -> Result<Box<DataFrame>, DataFrameError> {
        unimplemented!()
    }

    fn filter(&self, expr: Rex) -> Result<Box<DataFrame>, DataFrameError> {

        let plan = Rel::Selection {
            expr: expr,
            input: self.plan.clone(),
            schema: self.plan.schema().clone()
        };

        Ok(Box::new(DF { ctx: self.ctx.clone(), plan: Box::new(plan) }))
    }

    fn write(&self, filename: &str) -> Result<(), DataFrameError> {
        let execution_plan = self.ctx.create_execution_plan(&self.plan)?;

        // create output file
        let mut file = File::create(filename)?;

        // implement execution here for now but should be a common method for processing a plan
        let it = execution_plan.scan(&self.ctx);
        it.for_each(|t| {
            match t {
                Ok(tuple) => {
                    let csv = format!("{:?}", tuple);
                    file.write(&csv.into_bytes());
                },
                _ => println!("Error") //TODO: error handling
            }
        });

        Ok(())
    }

    fn col(&self, column_name: &str) -> Result<Rex, DataFrameError> {
        match &self.plan.as_ref() {
            &&Rel::CsvFile { ref filename, ref schema } => match schema.column(column_name) {
                Some((i,c)) => Ok(Rex::TupleValue(i)),
                _ => Err(DataFrameError::TBD) // column doesn't exist
            },
            _ => Err(DataFrameError::NotImplemented)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use super::super::parser::*;
    use super::super::rel::*;
    use super::super::sqltorel::*;

    #[test]
    fn test_sqrt() {

        //TODO: refactor so there is a way to write concise tests


        let sql = "SELECT id, sqrt(id) FROM people";

        // parse SQL into AST
        let ast = Parser::parse_sql(String::from(sql)).unwrap();

        // define schema for a csv file
        let schema = TupleType {
            columns: vec![
                ColumnMeta { name: String::from("id"), data_type: DataType::UnsignedLong, nullable: false },
                ColumnMeta { name: String::from("name"), data_type: DataType::String, nullable: false }
            ]
        };

        // create a schema registry
        let mut schemas : HashMap<String, TupleType> = HashMap::new();
        schemas.insert("people".to_string(), schema.clone());

        // create a query planner
        let query_planner = SqlToRel::new(schemas.clone());

        // plan the query (create a logical relational plan)
        let plan = query_planner.sql_to_rel(&ast).unwrap();

        // create execution context
        let mut ctx = ExecutionContext::new(schemas.clone());

        ctx.define_function( FunctionMeta {
            name: "sqrt".to_string(),
            args: vec![ ColumnMeta::new("value", DataType::Double, false) ],
            return_type: DataType::Double
        });

        // create execution plan
        let execution_plan = ctx.create_execution_plan(&plan).unwrap();

        // execute the query
        let it = execution_plan.scan(&ctx);
        let results : Vec<String> = it.map(|t| {
            match t {
                Ok(tuple) => tuple.to_string(),
                _ => format!("error")
            }
        })
        .collect();

        println!("Result: {:?}", results.join(","));

        let expected = "1,1,\
            2,1.4142135623730951,\
            3,1.7320508075688772,\
            4,2,\
            5,2.23606797749979,\
            6,2.449489742783178,\
            7,2.6457513110645907,\
            8,2.8284271247461903,\
            9,3,\
            10,3.1622776601683795";

        assert_eq!(expected, results.join(","));

    }
}