Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
datafusion 39.0.0 - Docs.rs
[go: Go Back, main page]

datafusion 39.0.0

DataFusion is an in-memory query engine that uses Apache Arrow as the memory model
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`SessionContext`] API for registering data sources and executing queries

use std::collections::HashSet;
use std::fmt::Debug;
use std::sync::{Arc, Weak};

use super::options::ReadOptions;
use crate::{
    catalog::listing_schema::ListingSchemaProvider,
    catalog::schema::MemorySchemaProvider,
    catalog::{CatalogProvider, CatalogProviderList, MemoryCatalogProvider},
    dataframe::DataFrame,
    datasource::{
        function::TableFunctionImpl,
        listing::{ListingOptions, ListingTable, ListingTableConfig, ListingTableUrl},
        provider::TableProviderFactory,
    },
    datasource::{provider_as_source, MemTable, TableProvider, ViewTable},
    error::{DataFusionError, Result},
    execution::{options::ArrowReadOptions, runtime_env::RuntimeEnv, FunctionRegistry},
    logical_expr::AggregateUDF,
    logical_expr::ScalarUDF,
    logical_expr::{
        CreateCatalog, CreateCatalogSchema, CreateExternalTable, CreateFunction,
        CreateMemoryTable, CreateView, DropCatalogSchema, DropFunction, DropTable,
        DropView, LogicalPlan, LogicalPlanBuilder, SetVariable, TableType, UNNAMED_TABLE,
    },
    physical_expr::PhysicalExpr,
    physical_plan::ExecutionPlan,
    variable::{VarProvider, VarType},
};

use arrow::datatypes::SchemaRef;
use arrow::record_batch::RecordBatch;
use arrow_schema::Schema;
use datafusion_common::{
    config::{ConfigExtension, TableOptions},
    exec_err, not_impl_err, plan_err,
    tree_node::{TreeNodeRecursion, TreeNodeVisitor},
    DFSchema, SchemaReference, TableReference,
};
use datafusion_execution::registry::SerializerRegistry;
use datafusion_expr::{
    expr_rewriter::FunctionRewrite,
    logical_plan::{DdlStatement, Statement},
    Expr, UserDefinedLogicalNode, WindowUDF,
};

// backwards compatibility
pub use crate::execution::session_state::SessionState;

use async_trait::async_trait;
use chrono::{DateTime, Utc};
use object_store::ObjectStore;
use parking_lot::RwLock;
use url::Url;

pub use datafusion_execution::config::SessionConfig;
pub use datafusion_execution::TaskContext;
pub use datafusion_expr::execution_props::ExecutionProps;

mod avro;
mod csv;
mod json;
#[cfg(feature = "parquet")]
mod parquet;

/// DataFilePaths adds a method to convert strings and vector of strings to vector of [`ListingTableUrl`] URLs.
/// This allows methods such [`SessionContext::read_csv`] and [`SessionContext::read_avro`]
/// to take either a single file or multiple files.
pub trait DataFilePaths {
    /// Parse to a vector of [`ListingTableUrl`] URLs.
    fn to_urls(self) -> Result<Vec<ListingTableUrl>>;
}

impl DataFilePaths for &str {
    fn to_urls(self) -> Result<Vec<ListingTableUrl>> {
        Ok(vec![ListingTableUrl::parse(self)?])
    }
}

impl DataFilePaths for String {
    fn to_urls(self) -> Result<Vec<ListingTableUrl>> {
        Ok(vec![ListingTableUrl::parse(self)?])
    }
}

impl DataFilePaths for &String {
    fn to_urls(self) -> Result<Vec<ListingTableUrl>> {
        Ok(vec![ListingTableUrl::parse(self)?])
    }
}

impl<P> DataFilePaths for Vec<P>
where
    P: AsRef<str>,
{
    fn to_urls(self) -> Result<Vec<ListingTableUrl>> {
        self.iter()
            .map(ListingTableUrl::parse)
            .collect::<Result<Vec<ListingTableUrl>>>()
    }
}

/// Main interface for executing queries with DataFusion. Maintains
/// the state of the connection between a user and an instance of the
/// DataFusion engine.
///
/// # Overview
///
/// [`SessionContext`] provides the following functionality:
///
/// * Create a [`DataFrame`] from a CSV or Parquet data source.
/// * Register a CSV or Parquet data source as a table that can be referenced from a SQL query.
/// * Register a custom data source that can be referenced from a SQL query.
/// * Execution a SQL query
///
/// # Example: DataFrame API
///
/// The following example demonstrates how to use the context to execute a query against a CSV
/// data source using the [`DataFrame`] API:
///
/// ```
/// use datafusion::prelude::*;
/// # use datafusion::{error::Result, assert_batches_eq};
/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// let ctx = SessionContext::new();
/// let df = ctx.read_csv("tests/data/example.csv", CsvReadOptions::new()).await?;
/// let df = df.filter(col("a").lt_eq(col("b")))?
///            .aggregate(vec![col("a")], vec![min(col("b"))])?
///            .limit(0, Some(100))?;
/// let results = df
///   .collect()
///   .await?;
/// assert_batches_eq!(
///  &[
///    "+---+----------------+",
///    "| a | MIN(?table?.b) |",
///    "+---+----------------+",
///    "| 1 | 2              |",
///    "+---+----------------+",
///  ],
///  &results
/// );
/// # Ok(())
/// # }
/// ```
///
/// # Example: SQL API
///
/// The following example demonstrates how to execute the same query using SQL:
///
/// ```
/// use datafusion::prelude::*;
/// # use datafusion::{error::Result, assert_batches_eq};
/// # #[tokio::main]
/// # async fn main() -> Result<()> {
/// let mut ctx = SessionContext::new();
/// ctx.register_csv("example", "tests/data/example.csv", CsvReadOptions::new()).await?;
/// let results = ctx
///   .sql("SELECT a, MIN(b) FROM example GROUP BY a LIMIT 100")
///   .await?
///   .collect()
///   .await?;
/// assert_batches_eq!(
///  &[
///    "+---+----------------+",
///    "| a | MIN(example.b) |",
///    "+---+----------------+",
///    "| 1 | 2              |",
///    "+---+----------------+",
///  ],
///  &results
/// );
/// # Ok(())
/// # }
/// ```
///
/// # `SessionContext`, `SessionState`, and `TaskContext`
///
/// The state required to optimize, and evaluate queries is
/// broken into three levels to allow tailoring
///
/// The objects are:
///
/// 1. [`SessionContext`]: Most users should use a `SessionContext`. It contains
/// all information required to execute queries including  high level APIs such
/// as [`SessionContext::sql`]. All queries run with the same `SessionContext`
/// share the same configuration and resources (e.g. memory limits).
///
/// 2. [`SessionState`]: contains information required to plan and execute an
/// individual query (e.g. creating a [`LogicalPlan`] or [`ExecutionPlan`]).
/// Each query is planned and executed using its own `SessionState`, which can
/// be created with [`SessionContext::state`]. `SessionState` allows finer
/// grained control over query execution, for example disallowing DDL operations
/// such as `CREATE TABLE`.
///
/// 3. [`TaskContext`] contains the state required for query execution (e.g.
/// [`ExecutionPlan::execute`]). It contains a subset of information in
/// [`SessionState`]. `TaskContext` allows executing [`ExecutionPlan`]s
/// [`PhysicalExpr`]s without requiring a full [`SessionState`].
///
/// [`PhysicalExpr`]: crate::physical_expr::PhysicalExpr
#[derive(Clone)]
pub struct SessionContext {
    /// UUID for the session
    session_id: String,
    /// Session start time
    session_start_time: DateTime<Utc>,
    /// Shared session state for the session
    state: Arc<RwLock<SessionState>>,
}

impl Default for SessionContext {
    fn default() -> Self {
        Self::new()
    }
}

impl SessionContext {
    /// Creates a new `SessionContext` using the default [`SessionConfig`].
    pub fn new() -> Self {
        Self::new_with_config(SessionConfig::new())
    }

    /// Finds any [`ListingSchemaProvider`]s and instructs them to reload tables from "disk"
    pub async fn refresh_catalogs(&self) -> Result<()> {
        let cat_names = self.catalog_names().clone();
        for cat_name in cat_names.iter() {
            let cat = self.catalog(cat_name.as_str()).ok_or_else(|| {
                DataFusionError::Internal("Catalog not found!".to_string())
            })?;
            for schema_name in cat.schema_names() {
                let schema = cat.schema(schema_name.as_str()).ok_or_else(|| {
                    DataFusionError::Internal("Schema not found!".to_string())
                })?;
                let lister = schema.as_any().downcast_ref::<ListingSchemaProvider>();
                if let Some(lister) = lister {
                    lister.refresh(&self.state()).await?;
                }
            }
        }
        Ok(())
    }

    /// Creates a new `SessionContext` using the provided
    /// [`SessionConfig`] and a new [`RuntimeEnv`].
    ///
    /// See [`Self::new_with_config_rt`] for more details on resource
    /// limits.
    pub fn new_with_config(config: SessionConfig) -> Self {
        let runtime = Arc::new(RuntimeEnv::default());
        Self::new_with_config_rt(config, runtime)
    }

    /// Creates a new `SessionContext` using the provided
    /// [`SessionConfig`] and a new [`RuntimeEnv`].
    #[deprecated(since = "32.0.0", note = "Use SessionContext::new_with_config")]
    pub fn with_config(config: SessionConfig) -> Self {
        Self::new_with_config(config)
    }

    /// Creates a new `SessionContext` using the provided
    /// [`SessionConfig`] and a [`RuntimeEnv`].
    ///
    /// # Resource Limits
    ///
    /// By default, each new `SessionContext` creates a new
    /// `RuntimeEnv`, and therefore will not enforce memory or disk
    /// limits for queries run on different `SessionContext`s.
    ///
    /// To enforce resource limits (e.g. to limit the total amount of
    /// memory used) across all DataFusion queries in a process,
    /// all `SessionContext`'s should be configured with the
    /// same `RuntimeEnv`.
    pub fn new_with_config_rt(config: SessionConfig, runtime: Arc<RuntimeEnv>) -> Self {
        let state = SessionState::new_with_config_rt(config, runtime);
        Self::new_with_state(state)
    }

    /// Creates a new `SessionContext` using the provided
    /// [`SessionConfig`] and a [`RuntimeEnv`].
    #[deprecated(since = "32.0.0", note = "Use SessionState::new_with_config_rt")]
    pub fn with_config_rt(config: SessionConfig, runtime: Arc<RuntimeEnv>) -> Self {
        Self::new_with_config_rt(config, runtime)
    }

    /// Creates a new `SessionContext` using the provided [`SessionState`]
    pub fn new_with_state(state: SessionState) -> Self {
        Self {
            session_id: state.session_id().to_string(),
            session_start_time: Utc::now(),
            state: Arc::new(RwLock::new(state)),
        }
    }

    /// Creates a new `SessionContext` using the provided [`SessionState`]
    #[deprecated(since = "32.0.0", note = "Use SessionState::new_with_state")]
    pub fn with_state(state: SessionState) -> Self {
        Self::new_with_state(state)
    }
    /// Returns the time this `SessionContext` was created
    pub fn session_start_time(&self) -> DateTime<Utc> {
        self.session_start_time
    }

    /// Registers a [`FunctionFactory`] to handle `CREATE FUNCTION` statements
    pub fn with_function_factory(
        self,
        function_factory: Arc<dyn FunctionFactory>,
    ) -> Self {
        self.state.write().set_function_factory(function_factory);
        self
    }

    /// Registers an [`ObjectStore`] to be used with a specific URL prefix.
    ///
    /// See [`RuntimeEnv::register_object_store`] for more details.
    ///
    /// # Example: register a local object store for the "file://" URL prefix
    /// ```
    /// # use std::sync::Arc;
    /// # use datafusion::prelude::SessionContext;
    /// # use datafusion_execution::object_store::ObjectStoreUrl;
    /// let object_store_url = ObjectStoreUrl::parse("file://").unwrap();
    /// let object_store = object_store::local::LocalFileSystem::new();
    /// let mut ctx = SessionContext::new();
    /// // All files with the file:// url prefix will be read from the local file system
    /// ctx.register_object_store(object_store_url.as_ref(), Arc::new(object_store));
    /// ```
    pub fn register_object_store(
        &self,
        url: &Url,
        object_store: Arc<dyn ObjectStore>,
    ) -> Option<Arc<dyn ObjectStore>> {
        self.runtime_env().register_object_store(url, object_store)
    }

    /// Registers the [`RecordBatch`] as the specified table name
    pub fn register_batch(
        &self,
        table_name: &str,
        batch: RecordBatch,
    ) -> Result<Option<Arc<dyn TableProvider>>> {
        let table = MemTable::try_new(batch.schema(), vec![vec![batch]])?;
        self.register_table(
            TableReference::Bare {
                table: table_name.into(),
            },
            Arc::new(table),
        )
    }

    /// Return the [RuntimeEnv] used to run queries with this `SessionContext`
    pub fn runtime_env(&self) -> Arc<RuntimeEnv> {
        self.state.read().runtime_env().clone()
    }

    /// Returns an id that uniquely identifies this `SessionContext`.
    pub fn session_id(&self) -> String {
        self.session_id.clone()
    }

    /// Return the [`TableProviderFactory`] that is registered for the
    /// specified file type, if any.
    pub fn table_factory(
        &self,
        file_type: &str,
    ) -> Option<Arc<dyn TableProviderFactory>> {
        self.state.read().table_factories().get(file_type).cloned()
    }

    /// Return the `enable_ident_normalization` of this Session
    pub fn enable_ident_normalization(&self) -> bool {
        self.state
            .read()
            .config()
            .options()
            .sql_parser
            .enable_ident_normalization
    }

    /// Return a copied version of config for this Session
    pub fn copied_config(&self) -> SessionConfig {
        self.state.read().config().clone()
    }

    /// Return a copied version of table options for this Session
    pub fn copied_table_options(&self) -> TableOptions {
        self.state.read().default_table_options()
    }

    /// Creates a [`DataFrame`] from SQL query text.
    ///
    /// Note: This API implements DDL statements such as `CREATE TABLE` and
    /// `CREATE VIEW` and DML statements such as `INSERT INTO` with in-memory
    /// default implementations. See [`Self::sql_with_options`].
    ///
    /// # Example: Running SQL queries
    ///
    /// See the example on [`Self`]
    ///
    /// # Example: Creating a Table with SQL
    ///
    /// ```
    /// use datafusion::prelude::*;
    /// # use datafusion::{error::Result, assert_batches_eq};
    /// # #[tokio::main]
    /// # async fn main() -> Result<()> {
    /// let mut ctx = SessionContext::new();
    /// ctx
    ///   .sql("CREATE TABLE foo (x INTEGER)")
    ///   .await?
    ///   .collect()
    ///   .await?;
    /// assert!(ctx.table_exist("foo").unwrap());
    /// # Ok(())
    /// # }
    /// ```
    pub async fn sql(&self, sql: &str) -> Result<DataFrame> {
        self.sql_with_options(sql, SQLOptions::new()).await
    }

    /// Creates a [`DataFrame`] from SQL query text, first validating
    /// that the queries are allowed by `options`
    ///
    /// # Example: Preventing Creating a Table with SQL
    ///
    /// If you want to avoid creating tables, or modifying data or the
    /// session, set [`SQLOptions`] appropriately:
    ///
    /// ```
    /// use datafusion::prelude::*;
    /// # use datafusion::{error::Result};
    /// # use datafusion::physical_plan::collect;
    /// # #[tokio::main]
    /// # async fn main() -> Result<()> {
    /// let mut ctx = SessionContext::new();
    /// let options = SQLOptions::new()
    ///   .with_allow_ddl(false);
    /// let err = ctx.sql_with_options("CREATE TABLE foo (x INTEGER)", options)
    ///   .await
    ///   .unwrap_err();
    /// assert!(
    ///   err.to_string().starts_with("Error during planning: DDL not supported: CreateMemoryTable")
    /// );
    /// # Ok(())
    /// # }
    /// ```
    pub async fn sql_with_options(
        &self,
        sql: &str,
        options: SQLOptions,
    ) -> Result<DataFrame> {
        let plan = self.state().create_logical_plan(sql).await?;
        options.verify_plan(&plan)?;

        self.execute_logical_plan(plan).await
    }

    /// Execute the [`LogicalPlan`], return a [`DataFrame`]. This API
    /// is not featured limited (so all SQL such as `CREATE TABLE` and
    /// `COPY` will be run).
    ///
    /// If you wish to limit the type of plan that can be run from
    /// SQL, see [`Self::sql_with_options`] and
    /// [`SQLOptions::verify_plan`].
    pub async fn execute_logical_plan(&self, plan: LogicalPlan) -> Result<DataFrame> {
        match plan {
            LogicalPlan::Ddl(ddl) => {
                // Box::pin avoids allocating the stack space within this function's frame
                // for every one of these individual async functions, decreasing the risk of
                // stack overflows.
                match ddl {
                    DdlStatement::CreateExternalTable(cmd) => {
                        Box::pin(async move { self.create_external_table(&cmd).await })
                            as std::pin::Pin<Box<dyn futures::Future<Output = _> + Send>>
                    }
                    DdlStatement::CreateMemoryTable(cmd) => {
                        Box::pin(self.create_memory_table(cmd))
                    }
                    DdlStatement::CreateView(cmd) => Box::pin(self.create_view(cmd)),
                    DdlStatement::CreateCatalogSchema(cmd) => {
                        Box::pin(self.create_catalog_schema(cmd))
                    }
                    DdlStatement::CreateCatalog(cmd) => {
                        Box::pin(self.create_catalog(cmd))
                    }
                    DdlStatement::DropTable(cmd) => Box::pin(self.drop_table(cmd)),
                    DdlStatement::DropView(cmd) => Box::pin(self.drop_view(cmd)),
                    DdlStatement::DropCatalogSchema(cmd) => {
                        Box::pin(self.drop_schema(cmd))
                    }
                    DdlStatement::CreateFunction(cmd) => {
                        Box::pin(self.create_function(cmd))
                    }
                    DdlStatement::DropFunction(cmd) => Box::pin(self.drop_function(cmd)),
                }
                .await
            }
            // TODO what about the other statements (like TransactionStart and TransactionEnd)
            LogicalPlan::Statement(Statement::SetVariable(stmt)) => {
                self.set_variable(stmt).await
            }

            plan => Ok(DataFrame::new(self.state(), plan)),
        }
    }

    /// Create a [`PhysicalExpr`] from an [`Expr`] after applying type
    /// coercion and function rewrites.
    ///
    /// Note: The expression is not [simplified] or otherwise optimized:  `a = 1
    /// + 2` will not be simplified to `a = 3` as this is a more involved process.
    /// See the [expr_api] example for how to simplify expressions.
    ///
    /// # Example
    /// ```
    /// # use std::sync::Arc;
    /// # use arrow::datatypes::{DataType, Field, Schema};
    /// # use datafusion::prelude::*;
    /// # use datafusion_common::DFSchema;
    /// // a = 1 (i64)
    /// let expr = col("a").eq(lit(1i64));
    /// // provide type information that `a` is an Int32
    /// let schema = Schema::new(vec![Field::new("a", DataType::Int32, true)]);
    /// let df_schema = DFSchema::try_from(schema).unwrap();
    /// // Create a PhysicalExpr. Note DataFusion automatically coerces (casts) `1i64` to `1i32`
    /// let physical_expr = SessionContext::new()
    ///   .create_physical_expr(expr, &df_schema).unwrap();
    /// ```
    /// # See Also
    /// * [`SessionState::create_physical_expr`] for a lower level API
    ///
    /// [simplified]: datafusion_optimizer::simplify_expressions
    /// [expr_api]: https://github.com/apache/datafusion/blob/main/datafusion-examples/examples/expr_api.rs
    pub fn create_physical_expr(
        &self,
        expr: Expr,
        df_schema: &DFSchema,
    ) -> Result<Arc<dyn PhysicalExpr>> {
        self.state.read().create_physical_expr(expr, df_schema)
    }

    // return an empty dataframe
    fn return_empty_dataframe(&self) -> Result<DataFrame> {
        let plan = LogicalPlanBuilder::empty(false).build()?;
        Ok(DataFrame::new(self.state(), plan))
    }

    async fn create_external_table(
        &self,
        cmd: &CreateExternalTable,
    ) -> Result<DataFrame> {
        let exist = self.table_exist(cmd.name.clone())?;
        if exist {
            match cmd.if_not_exists {
                true => return self.return_empty_dataframe(),
                false => {
                    return exec_err!("Table '{}' already exists", cmd.name);
                }
            }
        }

        let table_provider: Arc<dyn TableProvider> =
            self.create_custom_table(cmd).await?;
        self.register_table(cmd.name.clone(), table_provider)?;
        self.return_empty_dataframe()
    }

    async fn create_memory_table(&self, cmd: CreateMemoryTable) -> Result<DataFrame> {
        let CreateMemoryTable {
            name,
            input,
            if_not_exists,
            or_replace,
            constraints,
            column_defaults,
        } = cmd;

        let input = Arc::try_unwrap(input).unwrap_or_else(|e| e.as_ref().clone());
        let input = self.state().optimize(&input)?;
        let table = self.table(name.clone()).await;
        match (if_not_exists, or_replace, table) {
            (true, false, Ok(_)) => self.return_empty_dataframe(),
            (false, true, Ok(_)) => {
                self.deregister_table(name.clone())?;
                let schema = Arc::new(input.schema().as_ref().into());
                let physical = DataFrame::new(self.state(), input);

                let batches: Vec<_> = physical.collect_partitioned().await?;
                let table = Arc::new(
                    // pass constraints and column defaults to the mem table.
                    MemTable::try_new(schema, batches)?
                        .with_constraints(constraints)
                        .with_column_defaults(column_defaults.into_iter().collect()),
                );

                self.register_table(name.clone(), table)?;
                self.return_empty_dataframe()
            }
            (true, true, Ok(_)) => {
                exec_err!("'IF NOT EXISTS' cannot coexist with 'REPLACE'")
            }
            (_, _, Err(_)) => {
                let df_schema = input.schema();
                let schema = Arc::new(df_schema.as_ref().into());
                let physical = DataFrame::new(self.state(), input);

                let batches: Vec<_> = physical.collect_partitioned().await?;
                let table = Arc::new(
                    // pass constraints and column defaults to the mem table.
                    MemTable::try_new(schema, batches)?
                        .with_constraints(constraints)
                        .with_column_defaults(column_defaults.into_iter().collect()),
                );

                self.register_table(name, table)?;
                self.return_empty_dataframe()
            }
            (false, false, Ok(_)) => exec_err!("Table '{name}' already exists"),
        }
    }

    async fn create_view(&self, cmd: CreateView) -> Result<DataFrame> {
        let CreateView {
            name,
            input,
            or_replace,
            definition,
        } = cmd;

        let view = self.table(name.clone()).await;

        match (or_replace, view) {
            (true, Ok(_)) => {
                self.deregister_table(name.clone())?;
                let table = Arc::new(ViewTable::try_new((*input).clone(), definition)?);

                self.register_table(name, table)?;
                self.return_empty_dataframe()
            }
            (_, Err(_)) => {
                let table = Arc::new(ViewTable::try_new((*input).clone(), definition)?);

                self.register_table(name, table)?;
                self.return_empty_dataframe()
            }
            (false, Ok(_)) => exec_err!("Table '{name}' already exists"),
        }
    }

    async fn create_catalog_schema(&self, cmd: CreateCatalogSchema) -> Result<DataFrame> {
        let CreateCatalogSchema {
            schema_name,
            if_not_exists,
            ..
        } = cmd;

        // sqlparser doesnt accept database / catalog as parameter to CREATE SCHEMA
        // so for now, we default to default catalog
        let tokens: Vec<&str> = schema_name.split('.').collect();
        let (catalog, schema_name) = match tokens.len() {
            1 => {
                let state = self.state.read();
                let name = &state.config().options().catalog.default_catalog;
                let catalog = state.catalog_list().catalog(name).ok_or_else(|| {
                    DataFusionError::Execution(format!(
                        "Missing default catalog '{name}'"
                    ))
                })?;
                (catalog, tokens[0])
            }
            2 => {
                let name = &tokens[0];
                let catalog = self.catalog(name).ok_or_else(|| {
                    DataFusionError::Execution(format!("Missing catalog '{name}'"))
                })?;
                (catalog, tokens[1])
            }
            _ => return exec_err!("Unable to parse catalog from {schema_name}"),
        };
        let schema = catalog.schema(schema_name);

        match (if_not_exists, schema) {
            (true, Some(_)) => self.return_empty_dataframe(),
            (true, None) | (false, None) => {
                let schema = Arc::new(MemorySchemaProvider::new());
                catalog.register_schema(schema_name, schema)?;
                self.return_empty_dataframe()
            }
            (false, Some(_)) => exec_err!("Schema '{schema_name}' already exists"),
        }
    }

    async fn create_catalog(&self, cmd: CreateCatalog) -> Result<DataFrame> {
        let CreateCatalog {
            catalog_name,
            if_not_exists,
            ..
        } = cmd;
        let catalog = self.catalog(catalog_name.as_str());

        match (if_not_exists, catalog) {
            (true, Some(_)) => self.return_empty_dataframe(),
            (true, None) | (false, None) => {
                let new_catalog = Arc::new(MemoryCatalogProvider::new());
                self.state
                    .write()
                    .catalog_list()
                    .register_catalog(catalog_name, new_catalog);
                self.return_empty_dataframe()
            }
            (false, Some(_)) => exec_err!("Catalog '{catalog_name}' already exists"),
        }
    }

    async fn drop_table(&self, cmd: DropTable) -> Result<DataFrame> {
        let DropTable {
            name, if_exists, ..
        } = cmd;
        let result = self
            .find_and_deregister(name.clone(), TableType::Base)
            .await;
        match (result, if_exists) {
            (Ok(true), _) => self.return_empty_dataframe(),
            (_, true) => self.return_empty_dataframe(),
            (_, _) => exec_err!("Table '{name}' doesn't exist."),
        }
    }

    async fn drop_view(&self, cmd: DropView) -> Result<DataFrame> {
        let DropView {
            name, if_exists, ..
        } = cmd;
        let result = self
            .find_and_deregister(name.clone(), TableType::View)
            .await;
        match (result, if_exists) {
            (Ok(true), _) => self.return_empty_dataframe(),
            (_, true) => self.return_empty_dataframe(),
            (_, _) => exec_err!("View '{name}' doesn't exist."),
        }
    }

    async fn drop_schema(&self, cmd: DropCatalogSchema) -> Result<DataFrame> {
        let DropCatalogSchema {
            name,
            if_exists: allow_missing,
            cascade,
            schema: _,
        } = cmd;
        let catalog = {
            let state = self.state.read();
            let catalog_name = match &name {
                SchemaReference::Full { catalog, .. } => catalog.to_string(),
                SchemaReference::Bare { .. } => {
                    state.config_options().catalog.default_catalog.to_string()
                }
            };
            if let Some(catalog) = state.catalog_list().catalog(&catalog_name) {
                catalog
            } else if allow_missing {
                return self.return_empty_dataframe();
            } else {
                return self.schema_doesnt_exist_err(name);
            }
        };
        let dereg = catalog.deregister_schema(name.schema_name(), cascade)?;
        match (dereg, allow_missing) {
            (None, true) => self.return_empty_dataframe(),
            (None, false) => self.schema_doesnt_exist_err(name),
            (Some(_), _) => self.return_empty_dataframe(),
        }
    }

    fn schema_doesnt_exist_err(&self, schemaref: SchemaReference) -> Result<DataFrame> {
        exec_err!("Schema '{schemaref}' doesn't exist.")
    }

    async fn set_variable(&self, stmt: SetVariable) -> Result<DataFrame> {
        let SetVariable {
            variable, value, ..
        } = stmt;

        let mut state = self.state.write();
        state.config_mut().options_mut().set(&variable, &value)?;
        drop(state);

        self.return_empty_dataframe()
    }

    async fn create_custom_table(
        &self,
        cmd: &CreateExternalTable,
    ) -> Result<Arc<dyn TableProvider>> {
        let state = self.state.read().clone();
        let file_type = cmd.file_type.to_uppercase();
        let factory =
            state
                .table_factories()
                .get(file_type.as_str())
                .ok_or_else(|| {
                    DataFusionError::Execution(format!(
                        "Unable to find factory for {}",
                        cmd.file_type
                    ))
                })?;
        let table = (*factory).create(&state, cmd).await?;
        Ok(table)
    }

    async fn find_and_deregister<'a>(
        &self,
        table_ref: impl Into<TableReference>,
        table_type: TableType,
    ) -> Result<bool> {
        let table_ref = table_ref.into();
        let table = table_ref.table().to_owned();
        let maybe_schema = {
            let state = self.state.read();
            let resolved = state.resolve_table_ref(table_ref);
            state
                .catalog_list()
                .catalog(&resolved.catalog)
                .and_then(|c| c.schema(&resolved.schema))
        };

        if let Some(schema) = maybe_schema {
            if let Some(table_provider) = schema.table(&table).await? {
                if table_provider.table_type() == table_type {
                    schema.deregister_table(&table)?;
                    return Ok(true);
                }
            }
        }

        Ok(false)
    }

    async fn create_function(&self, stmt: CreateFunction) -> Result<DataFrame> {
        let function = {
            let state = self.state.read().clone();
            let function_factory = state.function_factory();

            match function_factory {
                Some(f) => f.create(&state, stmt).await?,
                _ => Err(DataFusionError::Configuration(
                    "Function factory has not been configured".into(),
                ))?,
            }
        };

        match function {
            RegisterFunction::Scalar(f) => {
                self.state.write().register_udf(f)?;
            }
            RegisterFunction::Aggregate(f) => {
                self.state.write().register_udaf(f)?;
            }
            RegisterFunction::Window(f) => {
                self.state.write().register_udwf(f)?;
            }
            RegisterFunction::Table(name, f) => self.register_udtf(&name, f),
        };

        self.return_empty_dataframe()
    }

    async fn drop_function(&self, stmt: DropFunction) -> Result<DataFrame> {
        // we don't know function type at this point
        // decision has been made to drop all functions
        let mut dropped = false;
        dropped |= self.state.write().deregister_udf(&stmt.name)?.is_some();
        dropped |= self.state.write().deregister_udaf(&stmt.name)?.is_some();
        dropped |= self.state.write().deregister_udwf(&stmt.name)?.is_some();

        // DROP FUNCTION IF EXISTS drops the specified function only if that
        // function exists and in this way, it avoids error. While the DROP FUNCTION
        // statement also performs the same function, it throws an
        // error if the function does not exist.

        if !stmt.if_exists && !dropped {
            exec_err!("Function does not exist")
        } else {
            self.return_empty_dataframe()
        }
    }

    /// Registers a variable provider within this context.
    pub fn register_variable(
        &self,
        variable_type: VarType,
        provider: Arc<dyn VarProvider + Send + Sync>,
    ) {
        self.state
            .write()
            .execution_props_mut()
            .add_var_provider(variable_type, provider);
    }

    /// Register a table UDF with this context
    pub fn register_udtf(&self, name: &str, fun: Arc<dyn TableFunctionImpl>) {
        self.state.write().register_udtf(name, fun)
    }

    /// Registers a scalar UDF within this context.
    ///
    /// Note in SQL queries, function names are looked up using
    /// lowercase unless the query uses quotes. For example,
    ///
    /// - `SELECT MY_FUNC(x)...` will look for a function named `"my_func"`
    /// - `SELECT "my_FUNC"(x)` will look for a function named `"my_FUNC"`
    /// Any functions registered with the udf name or its aliases will be overwritten with this new function
    pub fn register_udf(&self, f: ScalarUDF) {
        let mut state = self.state.write();
        state.register_udf(Arc::new(f)).ok();
    }

    /// Registers an aggregate UDF within this context.
    ///
    /// Note in SQL queries, aggregate names are looked up using
    /// lowercase unless the query uses quotes. For example,
    ///
    /// - `SELECT MY_UDAF(x)...` will look for an aggregate named `"my_udaf"`
    /// - `SELECT "my_UDAF"(x)` will look for an aggregate named `"my_UDAF"`
    pub fn register_udaf(&self, f: AggregateUDF) {
        self.state.write().register_udaf(Arc::new(f)).ok();
    }

    /// Registers a window UDF within this context.
    ///
    /// Note in SQL queries, window function names are looked up using
    /// lowercase unless the query uses quotes. For example,
    ///
    /// - `SELECT MY_UDWF(x)...` will look for a window function named `"my_udwf"`
    /// - `SELECT "my_UDWF"(x)` will look for a window function named `"my_UDWF"`
    pub fn register_udwf(&self, f: WindowUDF) {
        self.state.write().register_udwf(Arc::new(f)).ok();
    }

    /// Deregisters a UDF within this context.
    pub fn deregister_udf(&self, name: &str) {
        self.state.write().deregister_udf(name).ok();
    }

    /// Deregisters a UDAF within this context.
    pub fn deregister_udaf(&self, name: &str) {
        self.state.write().deregister_udaf(name).ok();
    }

    /// Deregisters a UDWF within this context.
    pub fn deregister_udwf(&self, name: &str) {
        self.state.write().deregister_udwf(name).ok();
    }

    /// Creates a [`DataFrame`] for reading a data source.
    ///
    /// For more control such as reading multiple files, you can use
    /// [`read_table`](Self::read_table) with a [`ListingTable`].
    async fn _read_type<'a, P: DataFilePaths>(
        &self,
        table_paths: P,
        options: impl ReadOptions<'a>,
    ) -> Result<DataFrame> {
        let table_paths = table_paths.to_urls()?;
        let session_config = self.copied_config();
        let listing_options =
            options.to_listing_options(&session_config, self.copied_table_options());

        let option_extension = listing_options.file_extension.clone();

        if table_paths.is_empty() {
            return exec_err!("No table paths were provided");
        }

        // check if the file extension matches the expected extension
        for path in &table_paths {
            let file_path = path.as_str();
            if !file_path.ends_with(option_extension.clone().as_str())
                && !path.is_collection()
            {
                return exec_err!(
                    "File path '{file_path}' does not match the expected extension '{option_extension}'"
                );
            }
        }

        let resolved_schema = options
            .get_resolved_schema(&session_config, self.state(), table_paths[0].clone())
            .await?;
        let config = ListingTableConfig::new_with_multi_paths(table_paths)
            .with_listing_options(listing_options)
            .with_schema(resolved_schema);
        let provider = ListingTable::try_new(config)?;
        self.read_table(Arc::new(provider))
    }

    /// Creates a [`DataFrame`] for reading an Arrow data source.
    ///
    /// For more control such as reading multiple files, you can use
    /// [`read_table`](Self::read_table) with a [`ListingTable`].
    ///
    /// For an example, see [`read_csv`](Self::read_csv)
    pub async fn read_arrow<P: DataFilePaths>(
        &self,
        table_paths: P,
        options: ArrowReadOptions<'_>,
    ) -> Result<DataFrame> {
        self._read_type(table_paths, options).await
    }

    /// Creates an empty DataFrame.
    pub fn read_empty(&self) -> Result<DataFrame> {
        Ok(DataFrame::new(
            self.state(),
            LogicalPlanBuilder::empty(true).build()?,
        ))
    }

    /// Creates a [`DataFrame`] for a [`TableProvider`] such as a
    /// [`ListingTable`] or a custom user defined provider.
    pub fn read_table(&self, provider: Arc<dyn TableProvider>) -> Result<DataFrame> {
        Ok(DataFrame::new(
            self.state(),
            LogicalPlanBuilder::scan(UNNAMED_TABLE, provider_as_source(provider), None)?
                .build()?,
        ))
    }

    /// Creates a [`DataFrame`] for reading a [`RecordBatch`]
    pub fn read_batch(&self, batch: RecordBatch) -> Result<DataFrame> {
        let provider = MemTable::try_new(batch.schema(), vec![vec![batch]])?;
        Ok(DataFrame::new(
            self.state(),
            LogicalPlanBuilder::scan(
                UNNAMED_TABLE,
                provider_as_source(Arc::new(provider)),
                None,
            )?
            .build()?,
        ))
    }
    /// Create a [`DataFrame`] for reading a [`Vec[`RecordBatch`]`]
    pub fn read_batches(
        &self,
        batches: impl IntoIterator<Item = RecordBatch>,
    ) -> Result<DataFrame> {
        // check schema uniqueness
        let mut batches = batches.into_iter().peekable();
        let schema = if let Some(batch) = batches.peek() {
            batch.schema().clone()
        } else {
            Arc::new(Schema::empty())
        };
        let provider = MemTable::try_new(schema, vec![batches.collect()])?;
        Ok(DataFrame::new(
            self.state(),
            LogicalPlanBuilder::scan(
                UNNAMED_TABLE,
                provider_as_source(Arc::new(provider)),
                None,
            )?
            .build()?,
        ))
    }
    /// Registers a [`ListingTable`] that can assemble multiple files
    /// from locations in an [`ObjectStore`] instance into a single
    /// table.
    ///
    /// This method is `async` because it might need to resolve the schema.
    ///
    /// [`ObjectStore`]: object_store::ObjectStore
    pub async fn register_listing_table(
        &self,
        name: &str,
        table_path: impl AsRef<str>,
        options: ListingOptions,
        provided_schema: Option<SchemaRef>,
        sql_definition: Option<String>,
    ) -> Result<()> {
        let table_path = ListingTableUrl::parse(table_path)?;
        let resolved_schema = match provided_schema {
            Some(s) => s,
            None => options.infer_schema(&self.state(), &table_path).await?,
        };
        let config = ListingTableConfig::new(table_path)
            .with_listing_options(options)
            .with_schema(resolved_schema);
        let table = ListingTable::try_new(config)?.with_definition(sql_definition);
        self.register_table(
            TableReference::Bare { table: name.into() },
            Arc::new(table),
        )?;
        Ok(())
    }

    /// Registers an Arrow file as a table that can be referenced from
    /// SQL statements executed against this context.
    pub async fn register_arrow(
        &self,
        name: &str,
        table_path: &str,
        options: ArrowReadOptions<'_>,
    ) -> Result<()> {
        let listing_options = options
            .to_listing_options(&self.copied_config(), self.copied_table_options());

        self.register_listing_table(
            name,
            table_path,
            listing_options,
            options.schema.map(|s| Arc::new(s.to_owned())),
            None,
        )
        .await?;
        Ok(())
    }

    /// Registers a named catalog using a custom `CatalogProvider` so that
    /// it can be referenced from SQL statements executed against this
    /// context.
    ///
    /// Returns the [`CatalogProvider`] previously registered for this
    /// name, if any
    pub fn register_catalog(
        &self,
        name: impl Into<String>,
        catalog: Arc<dyn CatalogProvider>,
    ) -> Option<Arc<dyn CatalogProvider>> {
        let name = name.into();
        self.state
            .read()
            .catalog_list()
            .register_catalog(name, catalog)
    }

    /// Retrieves the list of available catalog names.
    pub fn catalog_names(&self) -> Vec<String> {
        self.state.read().catalog_list().catalog_names()
    }

    /// Retrieves a [`CatalogProvider`] instance by name
    pub fn catalog(&self, name: &str) -> Option<Arc<dyn CatalogProvider>> {
        self.state.read().catalog_list().catalog(name)
    }

    /// Registers a [`TableProvider`] as a table that can be
    /// referenced from SQL statements executed against this context.
    ///
    /// Returns the [`TableProvider`] previously registered for this
    /// reference, if any
    pub fn register_table(
        &self,
        table_ref: impl Into<TableReference>,
        provider: Arc<dyn TableProvider>,
    ) -> Result<Option<Arc<dyn TableProvider>>> {
        let table_ref: TableReference = table_ref.into();
        let table = table_ref.table().to_owned();
        self.state
            .read()
            .schema_for_ref(table_ref)?
            .register_table(table, provider)
    }

    /// Deregisters the given table.
    ///
    /// Returns the registered provider, if any
    pub fn deregister_table(
        &self,
        table_ref: impl Into<TableReference>,
    ) -> Result<Option<Arc<dyn TableProvider>>> {
        let table_ref = table_ref.into();
        let table = table_ref.table().to_owned();
        self.state
            .read()
            .schema_for_ref(table_ref)?
            .deregister_table(&table)
    }

    /// Return `true` if the specified table exists in the schema provider.
    pub fn table_exist(&self, table_ref: impl Into<TableReference>) -> Result<bool> {
        let table_ref: TableReference = table_ref.into();
        let table = table_ref.table();
        let table_ref = table_ref.clone();
        Ok(self
            .state
            .read()
            .schema_for_ref(table_ref)?
            .table_exist(table))
    }

    /// Retrieves a [`DataFrame`] representing a table previously
    /// registered by calling the [`register_table`] function.
    ///
    /// Returns an error if no table has been registered with the
    /// provided reference.
    ///
    /// [`register_table`]: SessionContext::register_table
    pub async fn table<'a>(
        &self,
        table_ref: impl Into<TableReference>,
    ) -> Result<DataFrame> {
        let table_ref: TableReference = table_ref.into();
        let provider = self.table_provider(table_ref.clone()).await?;
        let plan = LogicalPlanBuilder::scan(
            table_ref,
            provider_as_source(Arc::clone(&provider)),
            None,
        )?
        .build()?;
        Ok(DataFrame::new(self.state(), plan))
    }

    /// Return a [`TableProvider`] for the specified table.
    pub async fn table_provider<'a>(
        &self,
        table_ref: impl Into<TableReference>,
    ) -> Result<Arc<dyn TableProvider>> {
        let table_ref = table_ref.into();
        let table = table_ref.table().to_string();
        let schema = self.state.read().schema_for_ref(table_ref)?;
        match schema.table(&table).await? {
            Some(ref provider) => Ok(Arc::clone(provider)),
            _ => plan_err!("No table named '{table}'"),
        }
    }

    /// Get a new TaskContext to run in this session
    pub fn task_ctx(&self) -> Arc<TaskContext> {
        Arc::new(TaskContext::from(self))
    }

    /// Snapshots the [`SessionState`] of this [`SessionContext`] setting the
    /// `query_execution_start_time` to the current time
    pub fn state(&self) -> SessionState {
        let mut state = self.state.read().clone();
        state.execution_props_mut().start_execution();
        state
    }

    /// Get weak reference to [`SessionState`]
    pub fn state_weak_ref(&self) -> Weak<RwLock<SessionState>> {
        Arc::downgrade(&self.state)
    }

    /// Register [`CatalogProviderList`] in [`SessionState`]
    pub fn register_catalog_list(&mut self, catalog_list: Arc<dyn CatalogProviderList>) {
        self.state.write().register_catalog_list(catalog_list)
    }

    /// Registers a [`ConfigExtension`] as a table option extention that can be
    /// referenced from SQL statements executed against this context.
    pub fn register_table_options_extension<T: ConfigExtension>(&self, extension: T) {
        self.state
            .write()
            .register_table_options_extension(extension)
    }
}

impl FunctionRegistry for SessionContext {
    fn udfs(&self) -> HashSet<String> {
        self.state.read().udfs()
    }

    fn udf(&self, name: &str) -> Result<Arc<ScalarUDF>> {
        self.state.read().udf(name)
    }

    fn udaf(&self, name: &str) -> Result<Arc<AggregateUDF>> {
        self.state.read().udaf(name)
    }

    fn udwf(&self, name: &str) -> Result<Arc<WindowUDF>> {
        self.state.read().udwf(name)
    }
    fn register_udf(&mut self, udf: Arc<ScalarUDF>) -> Result<Option<Arc<ScalarUDF>>> {
        self.state.write().register_udf(udf)
    }
    fn register_udaf(
        &mut self,
        udaf: Arc<AggregateUDF>,
    ) -> Result<Option<Arc<AggregateUDF>>> {
        self.state.write().register_udaf(udaf)
    }
    fn register_udwf(&mut self, udwf: Arc<WindowUDF>) -> Result<Option<Arc<WindowUDF>>> {
        self.state.write().register_udwf(udwf)
    }

    fn register_function_rewrite(
        &mut self,
        rewrite: Arc<dyn FunctionRewrite + Send + Sync>,
    ) -> Result<()> {
        self.state.write().register_function_rewrite(rewrite)
    }
}

/// Create a new task context instance from SessionContext
impl From<&SessionContext> for TaskContext {
    fn from(session: &SessionContext) -> Self {
        TaskContext::from(&*session.state.read())
    }
}

/// A planner used to add extensions to DataFusion logical and physical plans.
#[async_trait]
pub trait QueryPlanner {
    /// Given a `LogicalPlan`, create an [`ExecutionPlan`] suitable for execution
    async fn create_physical_plan(
        &self,
        logical_plan: &LogicalPlan,
        session_state: &SessionState,
    ) -> Result<Arc<dyn ExecutionPlan>>;
}

/// A pluggable interface to handle `CREATE FUNCTION` statements
/// and interact with [SessionState] to registers new udf, udaf or udwf.

#[async_trait]
pub trait FunctionFactory: Sync + Send {
    /// Handles creation of user defined function specified in [CreateFunction] statement
    async fn create(
        &self,
        state: &SessionState,
        statement: CreateFunction,
    ) -> Result<RegisterFunction>;
}

/// Type of function to create
pub enum RegisterFunction {
    /// Scalar user defined function
    Scalar(Arc<ScalarUDF>),
    /// Aggregate user defined function
    Aggregate(Arc<AggregateUDF>),
    /// Window user defined function
    Window(Arc<WindowUDF>),
    /// Table user defined function
    Table(String, Arc<dyn TableFunctionImpl>),
}

/// Default implementation of [SerializerRegistry] that throws unimplemented error
/// for all requests.
pub struct EmptySerializerRegistry;

impl SerializerRegistry for EmptySerializerRegistry {
    fn serialize_logical_plan(
        &self,
        node: &dyn UserDefinedLogicalNode,
    ) -> Result<Vec<u8>> {
        not_impl_err!(
            "Serializing user defined logical plan node `{}` is not supported",
            node.name()
        )
    }

    fn deserialize_logical_plan(
        &self,
        name: &str,
        _bytes: &[u8],
    ) -> Result<Arc<dyn UserDefinedLogicalNode>> {
        not_impl_err!(
            "Deserializing user defined logical plan node `{name}` is not supported"
        )
    }
}

/// Describes which SQL statements can be run.
///
/// See [`SessionContext::sql_with_options`] for more details.
#[derive(Clone, Debug, Copy)]
pub struct SQLOptions {
    /// See [`Self::with_allow_ddl`]
    allow_ddl: bool,
    /// See [`Self::with_allow_dml`]
    allow_dml: bool,
    /// See [`Self::with_allow_statements`]
    allow_statements: bool,
}

impl Default for SQLOptions {
    fn default() -> Self {
        Self {
            allow_ddl: true,
            allow_dml: true,
            allow_statements: true,
        }
    }
}

impl SQLOptions {
    /// Create a new `SQLOptions` with default values
    pub fn new() -> Self {
        Default::default()
    }

    /// Should DML data modification commands  (e.g. `INSERT and COPY`) be run? Defaults to `true`.
    pub fn with_allow_ddl(mut self, allow: bool) -> Self {
        self.allow_ddl = allow;
        self
    }

    /// Should DML data modification commands (e.g. `INSERT and COPY`) be run? Defaults to `true`
    pub fn with_allow_dml(mut self, allow: bool) -> Self {
        self.allow_dml = allow;
        self
    }

    /// Should Statements such as (e.g. `SET VARIABLE and `BEGIN TRANSACTION` ...`) be run?. Defaults to `true`
    pub fn with_allow_statements(mut self, allow: bool) -> Self {
        self.allow_statements = allow;
        self
    }

    /// Return an error if the [`LogicalPlan`] has any nodes that are
    /// incompatible with this [`SQLOptions`].
    pub fn verify_plan(&self, plan: &LogicalPlan) -> Result<()> {
        plan.visit_with_subqueries(&mut BadPlanVisitor::new(self))?;
        Ok(())
    }
}

struct BadPlanVisitor<'a> {
    options: &'a SQLOptions,
}
impl<'a> BadPlanVisitor<'a> {
    fn new(options: &'a SQLOptions) -> Self {
        Self { options }
    }
}

impl<'n, 'a> TreeNodeVisitor<'n> for BadPlanVisitor<'a> {
    type Node = LogicalPlan;

    fn f_down(&mut self, node: &'n Self::Node) -> Result<TreeNodeRecursion> {
        match node {
            LogicalPlan::Ddl(ddl) if !self.options.allow_ddl => {
                plan_err!("DDL not supported: {}", ddl.name())
            }
            LogicalPlan::Dml(dml) if !self.options.allow_dml => {
                plan_err!("DML not supported: {}", dml.op)
            }
            LogicalPlan::Copy(_) if !self.options.allow_dml => {
                plan_err!("DML not supported: COPY")
            }
            LogicalPlan::Statement(stmt) if !self.options.allow_statements => {
                plan_err!("Statement not supported: {}", stmt.name())
            }
            _ => Ok(TreeNodeRecursion::Continue),
        }
    }
}

#[cfg(test)]
mod tests {
    use std::env;
    use std::path::PathBuf;

    use super::{super::options::CsvReadOptions, *};
    use crate::assert_batches_eq;
    use crate::execution::memory_pool::MemoryConsumer;
    use crate::execution::runtime_env::RuntimeConfig;
    use crate::test;
    use crate::test_util::{plan_and_collect, populate_csv_partitions};

    use datafusion_common_runtime::SpawnedTask;

    use crate::catalog::schema::SchemaProvider;
    use crate::physical_planner::PhysicalPlanner;
    use async_trait::async_trait;
    use tempfile::TempDir;

    #[tokio::test]
    async fn shared_memory_and_disk_manager() {
        // Demonstrate the ability to share DiskManager and
        // MemoryPool between two different executions.
        let ctx1 = SessionContext::new();

        // configure with same memory / disk manager
        let memory_pool = ctx1.runtime_env().memory_pool.clone();

        let mut reservation = MemoryConsumer::new("test").register(&memory_pool);
        reservation.grow(100);

        let disk_manager = ctx1.runtime_env().disk_manager.clone();

        let ctx2 =
            SessionContext::new_with_config_rt(SessionConfig::new(), ctx1.runtime_env());

        assert_eq!(ctx1.runtime_env().memory_pool.reserved(), 100);
        assert_eq!(ctx2.runtime_env().memory_pool.reserved(), 100);

        drop(reservation);

        assert_eq!(ctx1.runtime_env().memory_pool.reserved(), 0);
        assert_eq!(ctx2.runtime_env().memory_pool.reserved(), 0);

        assert!(std::ptr::eq(
            Arc::as_ptr(&disk_manager),
            Arc::as_ptr(&ctx1.runtime_env().disk_manager)
        ));
        assert!(std::ptr::eq(
            Arc::as_ptr(&disk_manager),
            Arc::as_ptr(&ctx2.runtime_env().disk_manager)
        ));
    }

    #[tokio::test]
    async fn create_variable_expr() -> Result<()> {
        let tmp_dir = TempDir::new()?;
        let partition_count = 4;
        let ctx = create_ctx(&tmp_dir, partition_count).await?;

        let variable_provider = test::variable::SystemVar::new();
        ctx.register_variable(VarType::System, Arc::new(variable_provider));
        let variable_provider = test::variable::UserDefinedVar::new();
        ctx.register_variable(VarType::UserDefined, Arc::new(variable_provider));

        let provider = test::create_table_dual();
        ctx.register_table("dual", provider)?;

        let results =
            plan_and_collect(&ctx, "SELECT @@version, @name, @integer + 1 FROM dual")
                .await?;

        let expected = [
            "+----------------------+------------------------+---------------------+",
            "| @@version            | @name                  | @integer + Int64(1) |",
            "+----------------------+------------------------+---------------------+",
            "| system-var-@@version | user-defined-var-@name | 42                  |",
            "+----------------------+------------------------+---------------------+",
        ];
        assert_batches_eq!(expected, &results);

        Ok(())
    }

    #[tokio::test]
    async fn create_variable_err() -> Result<()> {
        let ctx = SessionContext::new();

        let err = plan_and_collect(&ctx, "SElECT @=   X3").await.unwrap_err();
        assert_eq!(
            err.strip_backtrace(),
            "Error during planning: variable [\"@=\"] has no type information"
        );
        Ok(())
    }

    #[tokio::test]
    async fn register_deregister() -> Result<()> {
        let tmp_dir = TempDir::new()?;
        let partition_count = 4;
        let ctx = create_ctx(&tmp_dir, partition_count).await?;

        let provider = test::create_table_dual();
        ctx.register_table("dual", provider)?;

        assert!(ctx.deregister_table("dual")?.is_some());
        assert!(ctx.deregister_table("dual")?.is_none());

        Ok(())
    }

    #[tokio::test]
    async fn send_context_to_threads() -> Result<()> {
        // ensure SessionContexts can be used in a multi-threaded
        // environment. Usecase is for concurrent planing.
        let tmp_dir = TempDir::new()?;
        let partition_count = 4;
        let ctx = Arc::new(create_ctx(&tmp_dir, partition_count).await?);

        let threads: Vec<_> = (0..2)
            .map(|_| ctx.clone())
            .map(|ctx| {
                SpawnedTask::spawn(async move {
                    // Ensure we can create logical plan code on a separate thread.
                    ctx.sql("SELECT c1, c2 FROM test WHERE c1 > 0 AND c1 < 3")
                        .await
                })
            })
            .collect();

        for handle in threads {
            handle.join().await.unwrap().unwrap();
        }
        Ok(())
    }

    #[tokio::test]
    async fn with_listing_schema_provider() -> Result<()> {
        let path = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
        let path = path.join("tests/tpch-csv");
        let url = format!("file://{}", path.display());

        let rt_cfg = RuntimeConfig::new();
        let runtime = Arc::new(RuntimeEnv::new(rt_cfg).unwrap());
        let cfg = SessionConfig::new()
            .set_str("datafusion.catalog.location", url.as_str())
            .set_str("datafusion.catalog.format", "CSV")
            .set_str("datafusion.catalog.has_header", "true");
        let session_state = SessionState::new_with_config_rt(cfg, runtime);
        let ctx = SessionContext::new_with_state(session_state);
        ctx.refresh_catalogs().await?;

        let result =
            plan_and_collect(&ctx, "select c_name from default.customer limit 3;")
                .await?;

        let actual = arrow::util::pretty::pretty_format_batches(&result)
            .unwrap()
            .to_string();
        let expected = r#"+--------------------+
| c_name             |
+--------------------+
| Customer#000000002 |
| Customer#000000003 |
| Customer#000000004 |
+--------------------+"#;
        assert_eq!(actual, expected);

        Ok(())
    }

    #[tokio::test]
    async fn custom_query_planner() -> Result<()> {
        let runtime = Arc::new(RuntimeEnv::default());
        let session_state =
            SessionState::new_with_config_rt(SessionConfig::new(), runtime)
                .with_query_planner(Arc::new(MyQueryPlanner {}));
        let ctx = SessionContext::new_with_state(session_state);

        let df = ctx.sql("SELECT 1").await?;
        df.collect().await.expect_err("query not supported");
        Ok(())
    }

    #[tokio::test]
    async fn disabled_default_catalog_and_schema() -> Result<()> {
        let ctx = SessionContext::new_with_config(
            SessionConfig::new().with_create_default_catalog_and_schema(false),
        );

        assert!(matches!(
            ctx.register_table("test", test::table_with_sequence(1, 1)?),
            Err(DataFusionError::Plan(_))
        ));

        assert!(matches!(
            ctx.sql("select * from datafusion.public.test").await,
            Err(DataFusionError::Plan(_))
        ));

        Ok(())
    }

    #[tokio::test]
    async fn custom_catalog_and_schema() {
        let config = SessionConfig::new()
            .with_create_default_catalog_and_schema(true)
            .with_default_catalog_and_schema("my_catalog", "my_schema");
        catalog_and_schema_test(config).await;
    }

    #[tokio::test]
    async fn custom_catalog_and_schema_no_default() {
        let config = SessionConfig::new()
            .with_create_default_catalog_and_schema(false)
            .with_default_catalog_and_schema("my_catalog", "my_schema");
        catalog_and_schema_test(config).await;
    }

    #[tokio::test]
    async fn custom_catalog_and_schema_and_information_schema() {
        let config = SessionConfig::new()
            .with_create_default_catalog_and_schema(true)
            .with_information_schema(true)
            .with_default_catalog_and_schema("my_catalog", "my_schema");
        catalog_and_schema_test(config).await;
    }

    async fn catalog_and_schema_test(config: SessionConfig) {
        let ctx = SessionContext::new_with_config(config);
        let catalog = MemoryCatalogProvider::new();
        let schema = MemorySchemaProvider::new();
        schema
            .register_table("test".to_owned(), test::table_with_sequence(1, 1).unwrap())
            .unwrap();
        catalog
            .register_schema("my_schema", Arc::new(schema))
            .unwrap();
        ctx.register_catalog("my_catalog", Arc::new(catalog));

        for table_ref in &["my_catalog.my_schema.test", "my_schema.test", "test"] {
            let result = plan_and_collect(
                &ctx,
                &format!("SELECT COUNT(*) AS count FROM {table_ref}"),
            )
            .await
            .unwrap();

            let expected = [
                "+-------+",
                "| count |",
                "+-------+",
                "| 1     |",
                "+-------+",
            ];
            assert_batches_eq!(expected, &result);
        }
    }

    #[tokio::test]
    async fn cross_catalog_access() -> Result<()> {
        let ctx = SessionContext::new();

        let catalog_a = MemoryCatalogProvider::new();
        let schema_a = MemorySchemaProvider::new();
        schema_a
            .register_table("table_a".to_owned(), test::table_with_sequence(1, 1)?)?;
        catalog_a.register_schema("schema_a", Arc::new(schema_a))?;
        ctx.register_catalog("catalog_a", Arc::new(catalog_a));

        let catalog_b = MemoryCatalogProvider::new();
        let schema_b = MemorySchemaProvider::new();
        schema_b
            .register_table("table_b".to_owned(), test::table_with_sequence(1, 2)?)?;
        catalog_b.register_schema("schema_b", Arc::new(schema_b))?;
        ctx.register_catalog("catalog_b", Arc::new(catalog_b));

        let result = plan_and_collect(
            &ctx,
            "SELECT cat, SUM(i) AS total FROM (
                    SELECT i, 'a' AS cat FROM catalog_a.schema_a.table_a
                    UNION ALL
                    SELECT i, 'b' AS cat FROM catalog_b.schema_b.table_b
                ) AS all
                GROUP BY cat
                ORDER BY cat
                ",
        )
        .await?;

        let expected = [
            "+-----+-------+",
            "| cat | total |",
            "+-----+-------+",
            "| a   | 1     |",
            "| b   | 3     |",
            "+-----+-------+",
        ];
        assert_batches_eq!(expected, &result);

        Ok(())
    }

    #[tokio::test]
    async fn catalogs_not_leaked() {
        // the information schema used to introduce cyclic Arcs
        let ctx = SessionContext::new_with_config(
            SessionConfig::new().with_information_schema(true),
        );

        // register a single catalog
        let catalog = Arc::new(MemoryCatalogProvider::new());
        let catalog_weak = Arc::downgrade(&catalog);
        ctx.register_catalog("my_catalog", catalog);

        let catalog_list_weak = {
            let state = ctx.state.read();
            Arc::downgrade(&state.catalog_list())
        };

        drop(ctx);

        assert_eq!(Weak::strong_count(&catalog_list_weak), 0);
        assert_eq!(Weak::strong_count(&catalog_weak), 0);
    }

    #[tokio::test]
    async fn sql_create_schema() -> Result<()> {
        // the information schema used to introduce cyclic Arcs
        let ctx = SessionContext::new_with_config(
            SessionConfig::new().with_information_schema(true),
        );

        // Create schema
        ctx.sql("CREATE SCHEMA abc").await?.collect().await?;

        // Add table to schema
        ctx.sql("CREATE TABLE abc.y AS VALUES (1,2,3)")
            .await?
            .collect()
            .await?;

        // Check table exists in schema
        let results = ctx.sql("SELECT * FROM information_schema.tables WHERE table_schema='abc' AND table_name = 'y'").await.unwrap().collect().await.unwrap();

        assert_eq!(results[0].num_rows(), 1);
        Ok(())
    }

    #[tokio::test]
    async fn sql_create_catalog() -> Result<()> {
        // the information schema used to introduce cyclic Arcs
        let ctx = SessionContext::new_with_config(
            SessionConfig::new().with_information_schema(true),
        );

        // Create catalog
        ctx.sql("CREATE DATABASE test").await?.collect().await?;

        // Create schema
        ctx.sql("CREATE SCHEMA test.abc").await?.collect().await?;

        // Add table to schema
        ctx.sql("CREATE TABLE test.abc.y AS VALUES (1,2,3)")
            .await?
            .collect()
            .await?;

        // Check table exists in schema
        let results = ctx.sql("SELECT * FROM information_schema.tables WHERE table_catalog='test' AND table_schema='abc' AND table_name = 'y'").await.unwrap().collect().await.unwrap();

        assert_eq!(results[0].num_rows(), 1);
        Ok(())
    }

    struct MyPhysicalPlanner {}

    #[async_trait]
    impl PhysicalPlanner for MyPhysicalPlanner {
        async fn create_physical_plan(
            &self,
            _logical_plan: &LogicalPlan,
            _session_state: &SessionState,
        ) -> Result<Arc<dyn ExecutionPlan>> {
            not_impl_err!("query not supported")
        }

        fn create_physical_expr(
            &self,
            _expr: &Expr,
            _input_dfschema: &crate::common::DFSchema,
            _session_state: &SessionState,
        ) -> Result<Arc<dyn crate::physical_plan::PhysicalExpr>> {
            unimplemented!()
        }
    }

    struct MyQueryPlanner {}

    #[async_trait]
    impl QueryPlanner for MyQueryPlanner {
        async fn create_physical_plan(
            &self,
            logical_plan: &LogicalPlan,
            session_state: &SessionState,
        ) -> Result<Arc<dyn ExecutionPlan>> {
            let physical_planner = MyPhysicalPlanner {};
            physical_planner
                .create_physical_plan(logical_plan, session_state)
                .await
        }
    }

    /// Generate a partitioned CSV file and register it with an execution context
    async fn create_ctx(
        tmp_dir: &TempDir,
        partition_count: usize,
    ) -> Result<SessionContext> {
        let ctx = SessionContext::new_with_config(
            SessionConfig::new().with_target_partitions(8),
        );

        let schema = populate_csv_partitions(tmp_dir, partition_count, ".csv")?;

        // register csv file with the execution context
        ctx.register_csv(
            "test",
            tmp_dir.path().to_str().unwrap(),
            CsvReadOptions::new().schema(&schema),
        )
        .await?;

        Ok(ctx)
    }
}