Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
datafusion 7.0.0 - Docs.rs
[go: Go Back, main page]

datafusion 7.0.0

DataFusion is an in-memory query engine that uses Apache Arrow as the memory model
Documentation
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution

use std::any::Any;
use std::convert::TryFrom;
use std::sync::Arc;

use crate::error::{DataFusionError, Result};
use crate::physical_plan::{Accumulator, AggregateExpr, PhysicalExpr};
use crate::scalar::{
    ScalarValue, MAX_PRECISION_FOR_DECIMAL128, MAX_SCALE_FOR_DECIMAL128,
};
use arrow::compute;
use arrow::datatypes::DataType;
use arrow::{
    array::{ArrayRef, UInt64Array},
    datatypes::Field,
};

use super::{format_state_name, sum};

/// AVG aggregate expression
#[derive(Debug)]
pub struct Avg {
    name: String,
    expr: Arc<dyn PhysicalExpr>,
    data_type: DataType,
}

/// function return type of an average
pub fn avg_return_type(arg_type: &DataType) -> Result<DataType> {
    match arg_type {
        DataType::Decimal(precision, scale) => {
            // in the spark, the result type is DECIMAL(min(38,precision+4), min(38,scale+4)).
            // ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Average.scala#L66
            let new_precision = MAX_PRECISION_FOR_DECIMAL128.min(*precision + 4);
            let new_scale = MAX_SCALE_FOR_DECIMAL128.min(*scale + 4);
            Ok(DataType::Decimal(new_precision, new_scale))
        }
        DataType::Int8
        | DataType::Int16
        | DataType::Int32
        | DataType::Int64
        | DataType::UInt8
        | DataType::UInt16
        | DataType::UInt32
        | DataType::UInt64
        | DataType::Float32
        | DataType::Float64 => Ok(DataType::Float64),
        other => Err(DataFusionError::Plan(format!(
            "AVG does not support {:?}",
            other
        ))),
    }
}

pub(crate) fn is_avg_support_arg_type(arg_type: &DataType) -> bool {
    matches!(
        arg_type,
        DataType::UInt8
            | DataType::UInt16
            | DataType::UInt32
            | DataType::UInt64
            | DataType::Int8
            | DataType::Int16
            | DataType::Int32
            | DataType::Int64
            | DataType::Float32
            | DataType::Float64
            | DataType::Decimal(_, _)
    )
}

impl Avg {
    /// Create a new AVG aggregate function
    pub fn new(
        expr: Arc<dyn PhysicalExpr>,
        name: impl Into<String>,
        data_type: DataType,
    ) -> Self {
        // the result of avg just support FLOAT64 and Decimal data type.
        assert!(matches!(
            data_type,
            DataType::Float64 | DataType::Decimal(_, _)
        ));
        Self {
            name: name.into(),
            expr,
            data_type,
        }
    }
}

impl AggregateExpr for Avg {
    /// Return a reference to Any that can be used for downcasting
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn field(&self) -> Result<Field> {
        Ok(Field::new(&self.name, self.data_type.clone(), true))
    }

    fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
        Ok(Box::new(AvgAccumulator::try_new(
            // avg is f64 or decimal
            &self.data_type,
        )?))
    }

    fn state_fields(&self) -> Result<Vec<Field>> {
        Ok(vec![
            Field::new(
                &format_state_name(&self.name, "count"),
                DataType::UInt64,
                true,
            ),
            Field::new(
                &format_state_name(&self.name, "sum"),
                self.data_type.clone(),
                true,
            ),
        ])
    }

    fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
        vec![self.expr.clone()]
    }

    fn name(&self) -> &str {
        &self.name
    }
}

/// An accumulator to compute the average
#[derive(Debug)]
pub struct AvgAccumulator {
    // sum is used for null
    sum: ScalarValue,
    count: u64,
}

impl AvgAccumulator {
    /// Creates a new `AvgAccumulator`
    pub fn try_new(datatype: &DataType) -> Result<Self> {
        Ok(Self {
            sum: ScalarValue::try_from(datatype)?,
            count: 0,
        })
    }
}

impl Accumulator for AvgAccumulator {
    fn state(&self) -> Result<Vec<ScalarValue>> {
        Ok(vec![ScalarValue::from(self.count), self.sum.clone()])
    }

    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        let values = &values[0];

        self.count += (values.len() - values.data().null_count()) as u64;
        self.sum = sum::sum(&self.sum, &sum::sum_batch(values)?)?;
        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        let counts = states[0].as_any().downcast_ref::<UInt64Array>().unwrap();
        // counts are summed
        self.count += compute::sum(counts).unwrap_or(0);

        // sums are summed
        self.sum = sum::sum(&self.sum, &sum::sum_batch(&states[1])?)?;
        Ok(())
    }

    fn evaluate(&self) -> Result<ScalarValue> {
        match self.sum {
            ScalarValue::Float64(e) => {
                Ok(ScalarValue::Float64(e.map(|f| f / self.count as f64)))
            }
            ScalarValue::Decimal128(value, precision, scale) => {
                Ok(match value {
                    None => ScalarValue::Decimal128(None, precision, scale),
                    // TODO add the checker for overflow the precision
                    Some(v) => ScalarValue::Decimal128(
                        Some(v / self.count as i128),
                        precision,
                        scale,
                    ),
                })
            }
            _ => Err(DataFusionError::Internal(
                "Sum should be f64 on average".to_string(),
            )),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::from_slice::FromSlice;
    use crate::physical_plan::expressions::col;
    use crate::{error::Result, generic_test_op};
    use arrow::record_batch::RecordBatch;
    use arrow::{array::*, datatypes::*};

    #[test]
    fn test_avg_return_data_type() -> Result<()> {
        let data_type = DataType::Decimal(10, 5);
        let result_type = avg_return_type(&data_type)?;
        assert_eq!(DataType::Decimal(14, 9), result_type);

        let data_type = DataType::Decimal(36, 10);
        let result_type = avg_return_type(&data_type)?;
        assert_eq!(DataType::Decimal(38, 14), result_type);
        Ok(())
    }

    #[test]
    fn avg_decimal() -> Result<()> {
        // test agg
        let mut decimal_builder = DecimalBuilder::new(6, 10, 0);
        for i in 1..7 {
            decimal_builder.append_value(i as i128)?;
        }
        let array: ArrayRef = Arc::new(decimal_builder.finish());

        generic_test_op!(
            array,
            DataType::Decimal(10, 0),
            Avg,
            ScalarValue::Decimal128(Some(35000), 14, 4),
            DataType::Decimal(14, 4)
        )
    }

    #[test]
    fn avg_decimal_with_nulls() -> Result<()> {
        let mut decimal_builder = DecimalBuilder::new(5, 10, 0);
        for i in 1..6 {
            if i == 2 {
                decimal_builder.append_null()?;
            } else {
                decimal_builder.append_value(i)?;
            }
        }
        let array: ArrayRef = Arc::new(decimal_builder.finish());
        generic_test_op!(
            array,
            DataType::Decimal(10, 0),
            Avg,
            ScalarValue::Decimal128(Some(32500), 14, 4),
            DataType::Decimal(14, 4)
        )
    }

    #[test]
    fn avg_decimal_all_nulls() -> Result<()> {
        // test agg
        let mut decimal_builder = DecimalBuilder::new(5, 10, 0);
        for _i in 1..6 {
            decimal_builder.append_null()?;
        }
        let array: ArrayRef = Arc::new(decimal_builder.finish());
        generic_test_op!(
            array,
            DataType::Decimal(10, 0),
            Avg,
            ScalarValue::Decimal128(None, 14, 4),
            DataType::Decimal(14, 4)
        )
    }

    #[test]
    fn avg_i32() -> Result<()> {
        let a: ArrayRef = Arc::new(Int32Array::from_slice(&[1, 2, 3, 4, 5]));
        generic_test_op!(
            a,
            DataType::Int32,
            Avg,
            ScalarValue::from(3_f64),
            DataType::Float64
        )
    }

    #[test]
    fn avg_i32_with_nulls() -> Result<()> {
        let a: ArrayRef = Arc::new(Int32Array::from(vec![
            Some(1),
            None,
            Some(3),
            Some(4),
            Some(5),
        ]));
        generic_test_op!(
            a,
            DataType::Int32,
            Avg,
            ScalarValue::from(3.25f64),
            DataType::Float64
        )
    }

    #[test]
    fn avg_i32_all_nulls() -> Result<()> {
        let a: ArrayRef = Arc::new(Int32Array::from(vec![None, None]));
        generic_test_op!(
            a,
            DataType::Int32,
            Avg,
            ScalarValue::Float64(None),
            DataType::Float64
        )
    }

    #[test]
    fn avg_u32() -> Result<()> {
        let a: ArrayRef = Arc::new(UInt32Array::from_slice(&[
            1_u32, 2_u32, 3_u32, 4_u32, 5_u32,
        ]));
        generic_test_op!(
            a,
            DataType::UInt32,
            Avg,
            ScalarValue::from(3.0f64),
            DataType::Float64
        )
    }

    #[test]
    fn avg_f32() -> Result<()> {
        let a: ArrayRef = Arc::new(Float32Array::from_slice(&[
            1_f32, 2_f32, 3_f32, 4_f32, 5_f32,
        ]));
        generic_test_op!(
            a,
            DataType::Float32,
            Avg,
            ScalarValue::from(3_f64),
            DataType::Float64
        )
    }

    #[test]
    fn avg_f64() -> Result<()> {
        let a: ArrayRef = Arc::new(Float64Array::from_slice(&[
            1_f64, 2_f64, 3_f64, 4_f64, 5_f64,
        ]));
        generic_test_op!(
            a,
            DataType::Float64,
            Avg,
            ScalarValue::from(3_f64),
            DataType::Float64
        )
    }

    fn aggregate(
        batch: &RecordBatch,
        agg: Arc<dyn AggregateExpr>,
    ) -> Result<ScalarValue> {
        let mut accum = agg.create_accumulator()?;
        let expr = agg.expressions();
        let values = expr
            .iter()
            .map(|e| e.evaluate(batch))
            .map(|r| r.map(|v| v.into_array(batch.num_rows())))
            .collect::<Result<Vec<_>>>()?;
        accum.update_batch(&values)?;
        accum.evaluate()
    }
}