use std::any::Any;
use std::convert::TryFrom;
use std::sync::Arc;
use crate::error::{DataFusionError, Result};
use crate::physical_plan::{Accumulator, AggregateExpr, PhysicalExpr};
use crate::scalar::{
ScalarValue, MAX_PRECISION_FOR_DECIMAL128, MAX_SCALE_FOR_DECIMAL128,
};
use arrow::compute;
use arrow::datatypes::DataType;
use arrow::{
array::{ArrayRef, UInt64Array},
datatypes::Field,
};
use super::{format_state_name, sum};
#[derive(Debug)]
pub struct Avg {
name: String,
expr: Arc<dyn PhysicalExpr>,
data_type: DataType,
}
pub fn avg_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
DataType::Decimal(precision, scale) => {
let new_precision = MAX_PRECISION_FOR_DECIMAL128.min(*precision + 4);
let new_scale = MAX_SCALE_FOR_DECIMAL128.min(*scale + 4);
Ok(DataType::Decimal(new_precision, new_scale))
}
DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Float32
| DataType::Float64 => Ok(DataType::Float64),
other => Err(DataFusionError::Plan(format!(
"AVG does not support {:?}",
other
))),
}
}
pub(crate) fn is_avg_support_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::Float32
| DataType::Float64
| DataType::Decimal(_, _)
)
}
impl Avg {
pub fn new(
expr: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
) -> Self {
assert!(matches!(
data_type,
DataType::Float64 | DataType::Decimal(_, _)
));
Self {
name: name.into(),
expr,
data_type,
}
}
}
impl AggregateExpr for Avg {
fn as_any(&self) -> &dyn Any {
self
}
fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, self.data_type.clone(), true))
}
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(AvgAccumulator::try_new(
&self.data_type,
)?))
}
fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
&format_state_name(&self.name, "count"),
DataType::UInt64,
true,
),
Field::new(
&format_state_name(&self.name, "sum"),
self.data_type.clone(),
true,
),
])
}
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr.clone()]
}
fn name(&self) -> &str {
&self.name
}
}
#[derive(Debug)]
pub struct AvgAccumulator {
sum: ScalarValue,
count: u64,
}
impl AvgAccumulator {
pub fn try_new(datatype: &DataType) -> Result<Self> {
Ok(Self {
sum: ScalarValue::try_from(datatype)?,
count: 0,
})
}
}
impl Accumulator for AvgAccumulator {
fn state(&self) -> Result<Vec<ScalarValue>> {
Ok(vec![ScalarValue::from(self.count), self.sum.clone()])
}
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = &values[0];
self.count += (values.len() - values.data().null_count()) as u64;
self.sum = sum::sum(&self.sum, &sum::sum_batch(values)?)?;
Ok(())
}
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let counts = states[0].as_any().downcast_ref::<UInt64Array>().unwrap();
self.count += compute::sum(counts).unwrap_or(0);
self.sum = sum::sum(&self.sum, &sum::sum_batch(&states[1])?)?;
Ok(())
}
fn evaluate(&self) -> Result<ScalarValue> {
match self.sum {
ScalarValue::Float64(e) => {
Ok(ScalarValue::Float64(e.map(|f| f / self.count as f64)))
}
ScalarValue::Decimal128(value, precision, scale) => {
Ok(match value {
None => ScalarValue::Decimal128(None, precision, scale),
Some(v) => ScalarValue::Decimal128(
Some(v / self.count as i128),
precision,
scale,
),
})
}
_ => Err(DataFusionError::Internal(
"Sum should be f64 on average".to_string(),
)),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::from_slice::FromSlice;
use crate::physical_plan::expressions::col;
use crate::{error::Result, generic_test_op};
use arrow::record_batch::RecordBatch;
use arrow::{array::*, datatypes::*};
#[test]
fn test_avg_return_data_type() -> Result<()> {
let data_type = DataType::Decimal(10, 5);
let result_type = avg_return_type(&data_type)?;
assert_eq!(DataType::Decimal(14, 9), result_type);
let data_type = DataType::Decimal(36, 10);
let result_type = avg_return_type(&data_type)?;
assert_eq!(DataType::Decimal(38, 14), result_type);
Ok(())
}
#[test]
fn avg_decimal() -> Result<()> {
let mut decimal_builder = DecimalBuilder::new(6, 10, 0);
for i in 1..7 {
decimal_builder.append_value(i as i128)?;
}
let array: ArrayRef = Arc::new(decimal_builder.finish());
generic_test_op!(
array,
DataType::Decimal(10, 0),
Avg,
ScalarValue::Decimal128(Some(35000), 14, 4),
DataType::Decimal(14, 4)
)
}
#[test]
fn avg_decimal_with_nulls() -> Result<()> {
let mut decimal_builder = DecimalBuilder::new(5, 10, 0);
for i in 1..6 {
if i == 2 {
decimal_builder.append_null()?;
} else {
decimal_builder.append_value(i)?;
}
}
let array: ArrayRef = Arc::new(decimal_builder.finish());
generic_test_op!(
array,
DataType::Decimal(10, 0),
Avg,
ScalarValue::Decimal128(Some(32500), 14, 4),
DataType::Decimal(14, 4)
)
}
#[test]
fn avg_decimal_all_nulls() -> Result<()> {
let mut decimal_builder = DecimalBuilder::new(5, 10, 0);
for _i in 1..6 {
decimal_builder.append_null()?;
}
let array: ArrayRef = Arc::new(decimal_builder.finish());
generic_test_op!(
array,
DataType::Decimal(10, 0),
Avg,
ScalarValue::Decimal128(None, 14, 4),
DataType::Decimal(14, 4)
)
}
#[test]
fn avg_i32() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from_slice(&[1, 2, 3, 4, 5]));
generic_test_op!(
a,
DataType::Int32,
Avg,
ScalarValue::from(3_f64),
DataType::Float64
)
}
#[test]
fn avg_i32_with_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![
Some(1),
None,
Some(3),
Some(4),
Some(5),
]));
generic_test_op!(
a,
DataType::Int32,
Avg,
ScalarValue::from(3.25f64),
DataType::Float64
)
}
#[test]
fn avg_i32_all_nulls() -> Result<()> {
let a: ArrayRef = Arc::new(Int32Array::from(vec![None, None]));
generic_test_op!(
a,
DataType::Int32,
Avg,
ScalarValue::Float64(None),
DataType::Float64
)
}
#[test]
fn avg_u32() -> Result<()> {
let a: ArrayRef = Arc::new(UInt32Array::from_slice(&[
1_u32, 2_u32, 3_u32, 4_u32, 5_u32,
]));
generic_test_op!(
a,
DataType::UInt32,
Avg,
ScalarValue::from(3.0f64),
DataType::Float64
)
}
#[test]
fn avg_f32() -> Result<()> {
let a: ArrayRef = Arc::new(Float32Array::from_slice(&[
1_f32, 2_f32, 3_f32, 4_f32, 5_f32,
]));
generic_test_op!(
a,
DataType::Float32,
Avg,
ScalarValue::from(3_f64),
DataType::Float64
)
}
#[test]
fn avg_f64() -> Result<()> {
let a: ArrayRef = Arc::new(Float64Array::from_slice(&[
1_f64, 2_f64, 3_f64, 4_f64, 5_f64,
]));
generic_test_op!(
a,
DataType::Float64,
Avg,
ScalarValue::from(3_f64),
DataType::Float64
)
}
fn aggregate(
batch: &RecordBatch,
agg: Arc<dyn AggregateExpr>,
) -> Result<ScalarValue> {
let mut accum = agg.create_accumulator()?;
let expr = agg.expressions();
let values = expr
.iter()
.map(|e| e.evaluate(batch))
.map(|r| r.map(|v| v.into_array(batch.num_rows())))
.collect::<Result<Vec<_>>>()?;
accum.update_batch(&values)?;
accum.evaluate()
}
}