use crate::{OptimizerConfig, OptimizerRule};
use arrow::datatypes::DataType;
use datafusion_common::{DFSchema, DFSchemaRef, DataFusionError, Result};
use datafusion_expr::expr_rewriter::{ExprRewritable, ExprRewriter, RewriteRecursion};
use datafusion_expr::logical_plan::Subquery;
use datafusion_expr::type_coercion::binary::{coerce_types, comparison_coercion};
use datafusion_expr::type_coercion::functions::data_types;
use datafusion_expr::type_coercion::other::{
get_coerce_type_for_case_when, get_coerce_type_for_list,
};
use datafusion_expr::utils::from_plan;
use datafusion_expr::{
is_false, is_not_false, is_not_true, is_not_unknown, is_true, is_unknown, Expr,
LogicalPlan, Operator,
};
use datafusion_expr::{ExprSchemable, Signature};
use std::sync::Arc;
#[derive(Default)]
pub struct TypeCoercion {}
impl TypeCoercion {
pub fn new() -> Self {
Self {}
}
}
impl OptimizerRule for TypeCoercion {
fn name(&self) -> &str {
"type_coercion"
}
fn optimize(
&self,
plan: &LogicalPlan,
optimizer_config: &mut OptimizerConfig,
) -> Result<LogicalPlan> {
optimize_internal(&DFSchema::empty(), plan, optimizer_config)
}
}
fn optimize_internal(
external_schema: &DFSchema,
plan: &LogicalPlan,
optimizer_config: &mut OptimizerConfig,
) -> Result<LogicalPlan> {
let new_inputs = plan
.inputs()
.iter()
.map(|p| optimize_internal(external_schema, p, optimizer_config))
.collect::<Result<Vec<_>>>()?;
let mut schema = new_inputs.iter().map(|input| input.schema()).fold(
DFSchema::empty(),
|mut lhs, rhs| {
lhs.merge(rhs);
lhs
},
);
schema.merge(external_schema);
let mut expr_rewrite = TypeCoercionRewriter {
schema: Arc::new(schema),
};
let original_expr_names: Vec<Option<String>> = plan
.expressions()
.iter()
.map(|expr| expr.name().ok())
.collect();
let new_expr = plan
.expressions()
.into_iter()
.zip(original_expr_names)
.map(|(expr, original_name)| {
let expr = expr.rewrite(&mut expr_rewrite)?;
if matches!(expr, Expr::AggregateFunction { .. }) {
if let Some((alias, name)) = original_name.zip(expr.name().ok()) {
if alias != name {
return Ok(expr.alias(&alias));
}
}
}
Ok(expr)
})
.collect::<Result<Vec<_>>>()?;
from_plan(plan, &new_expr, &new_inputs)
}
struct TypeCoercionRewriter {
pub(crate) schema: DFSchemaRef,
}
impl ExprRewriter for TypeCoercionRewriter {
fn pre_visit(&mut self, _expr: &Expr) -> Result<RewriteRecursion> {
Ok(RewriteRecursion::Continue)
}
fn mutate(&mut self, expr: Expr) -> Result<Expr> {
match expr {
Expr::ScalarSubquery(Subquery { subquery }) => {
let mut optimizer_config = OptimizerConfig::new();
let new_plan =
optimize_internal(&self.schema, &subquery, &mut optimizer_config)?;
Ok(Expr::ScalarSubquery(Subquery::new(new_plan)))
}
Expr::Exists { subquery, negated } => {
let mut optimizer_config = OptimizerConfig::new();
let new_plan = optimize_internal(
&self.schema,
&subquery.subquery,
&mut optimizer_config,
)?;
Ok(Expr::Exists {
subquery: Subquery::new(new_plan),
negated,
})
}
Expr::InSubquery {
expr,
subquery,
negated,
} => {
let mut optimizer_config = OptimizerConfig::new();
let new_plan = optimize_internal(
&self.schema,
&subquery.subquery,
&mut optimizer_config,
)?;
Ok(Expr::InSubquery {
expr,
subquery: Subquery::new(new_plan),
negated,
})
}
Expr::IsTrue(expr) => {
let expr = is_true(get_casted_expr_for_bool_op(&expr, &self.schema)?);
Ok(expr)
}
Expr::IsNotTrue(expr) => {
let expr = is_not_true(get_casted_expr_for_bool_op(&expr, &self.schema)?);
Ok(expr)
}
Expr::IsFalse(expr) => {
let expr = is_false(get_casted_expr_for_bool_op(&expr, &self.schema)?);
Ok(expr)
}
Expr::IsNotFalse(expr) => {
let expr =
is_not_false(get_casted_expr_for_bool_op(&expr, &self.schema)?);
Ok(expr)
}
Expr::Like {
negated,
expr,
pattern,
escape_char,
} => {
let left_type = expr.get_type(&self.schema)?;
let right_type = pattern.get_type(&self.schema)?;
let coerced_type =
coerce_types(&left_type, &Operator::Like, &right_type)?;
let expr = Box::new(expr.cast_to(&coerced_type, &self.schema)?);
let pattern = Box::new(pattern.cast_to(&coerced_type, &self.schema)?);
let expr = Expr::Like {
negated,
expr,
pattern,
escape_char,
};
Ok(expr)
}
Expr::ILike {
negated,
expr,
pattern,
escape_char,
} => {
let left_type = expr.get_type(&self.schema)?;
let right_type = pattern.get_type(&self.schema)?;
let coerced_type =
coerce_types(&left_type, &Operator::Like, &right_type)?;
let expr = Box::new(expr.cast_to(&coerced_type, &self.schema)?);
let pattern = Box::new(pattern.cast_to(&coerced_type, &self.schema)?);
let expr = Expr::ILike {
negated,
expr,
pattern,
escape_char,
};
Ok(expr)
}
Expr::IsUnknown(expr) => {
let left_type = expr.get_type(&self.schema)?;
let right_type = DataType::Boolean;
let coerced_type =
coerce_types(&left_type, &Operator::IsNotDistinctFrom, &right_type)?;
let expr = is_unknown(expr.cast_to(&coerced_type, &self.schema)?);
Ok(expr)
}
Expr::IsNotUnknown(expr) => {
let left_type = expr.get_type(&self.schema)?;
let right_type = DataType::Boolean;
let coerced_type =
coerce_types(&left_type, &Operator::IsDistinctFrom, &right_type)?;
let expr = is_not_unknown(expr.cast_to(&coerced_type, &self.schema)?);
Ok(expr)
}
Expr::BinaryExpr {
ref left,
op,
ref right,
} => {
let left_type = left.get_type(&self.schema)?;
let right_type = right.get_type(&self.schema)?;
match (&left_type, &right_type) {
(
DataType::Date32 | DataType::Date64 | DataType::Timestamp(_, _),
&DataType::Interval(_),
) => {
Ok(expr.clone())
}
_ => {
let coerced_type = coerce_types(&left_type, &op, &right_type)?;
let expr = Expr::BinaryExpr {
left: Box::new(
left.clone().cast_to(&coerced_type, &self.schema)?,
),
op,
right: Box::new(
right.clone().cast_to(&coerced_type, &self.schema)?,
),
};
Ok(expr)
}
}
}
Expr::Between {
expr,
negated,
low,
high,
} => {
let expr_type = expr.get_type(&self.schema)?;
let low_type = low.get_type(&self.schema)?;
let low_coerced_type = comparison_coercion(&expr_type, &low_type)
.ok_or_else(|| {
DataFusionError::Internal(format!(
"Failed to coerce types {} and {} in BETWEEN expression",
expr_type, low_type
))
})?;
let high_type = high.get_type(&self.schema)?;
let high_coerced_type = comparison_coercion(&expr_type, &low_type)
.ok_or_else(|| {
DataFusionError::Internal(format!(
"Failed to coerce types {} and {} in BETWEEN expression",
expr_type, high_type
))
})?;
let coercion_type =
comparison_coercion(&low_coerced_type, &high_coerced_type)
.ok_or_else(|| {
DataFusionError::Internal(format!(
"Failed to coerce types {} and {} in BETWEEN expression",
expr_type, high_type
))
})?;
let expr = Expr::Between {
expr: Box::new(expr.cast_to(&coercion_type, &self.schema)?),
negated,
low: Box::new(low.cast_to(&coercion_type, &self.schema)?),
high: Box::new(high.cast_to(&coercion_type, &self.schema)?),
};
Ok(expr)
}
Expr::ScalarUDF { fun, args } => {
let new_expr = coerce_arguments_for_signature(
args.as_slice(),
&self.schema,
&fun.signature,
)?;
let expr = Expr::ScalarUDF {
fun,
args: new_expr,
};
Ok(expr)
}
Expr::InList {
expr,
list,
negated,
} => {
let expr_data_type = expr.get_type(&self.schema)?;
let list_data_types = list
.iter()
.map(|list_expr| list_expr.get_type(&self.schema))
.collect::<Result<Vec<_>>>()?;
let result_type =
get_coerce_type_for_list(&expr_data_type, &list_data_types);
match result_type {
None => Err(DataFusionError::Plan(format!(
"Can not find compatible types to compare {:?} with {:?}",
expr_data_type, list_data_types
))),
Some(coerced_type) => {
let cast_expr = expr.cast_to(&coerced_type, &self.schema)?;
let cast_list_expr = list
.into_iter()
.map(|list_expr| {
list_expr.cast_to(&coerced_type, &self.schema)
})
.collect::<Result<Vec<_>>>()?;
let expr = Expr::InList {
expr: Box::new(cast_expr),
list: cast_list_expr,
negated,
};
Ok(expr)
}
}
}
Expr::Case {
expr,
when_then_expr,
else_expr,
} => {
let then_types = when_then_expr
.iter()
.map(|when_then| when_then.1.get_type(&self.schema))
.collect::<Result<Vec<_>>>()?;
let else_type = match &else_expr {
None => Ok(None),
Some(expr) => expr.get_type(&self.schema).map(Some),
}?;
let case_when_coerce_type =
get_coerce_type_for_case_when(&then_types, &else_type);
match case_when_coerce_type {
None => Err(DataFusionError::Internal(format!(
"Failed to coerce then ({:?}) and else ({:?}) to common types in CASE WHEN expression",
then_types, else_type
))),
Some(data_type) => {
let left = when_then_expr
.into_iter()
.map(|(when, then)| {
let then = then.cast_to(&data_type, &self.schema)?;
Ok((when, Box::new(then)))
})
.collect::<Result<Vec<_>>>()?;
let right = match else_expr {
None => None,
Some(expr) => {
Some(Box::new(expr.cast_to(&data_type, &self.schema)?))
}
};
Ok(Expr::Case {
expr,
when_then_expr: left,
else_expr: right,
})
}
}
}
expr => Ok(expr),
}
}
}
fn get_casted_expr_for_bool_op(expr: &Expr, schema: &DFSchemaRef) -> Result<Expr> {
let left_type = expr.get_type(schema)?;
let right_type = DataType::Boolean;
let coerced_type = coerce_types(&left_type, &Operator::IsDistinctFrom, &right_type)?;
expr.clone().cast_to(&coerced_type, schema)
}
fn coerce_arguments_for_signature(
expressions: &[Expr],
schema: &DFSchema,
signature: &Signature,
) -> Result<Vec<Expr>> {
if expressions.is_empty() {
return Ok(vec![]);
}
let current_types = expressions
.iter()
.map(|e| e.get_type(schema))
.collect::<Result<Vec<_>>>()?;
let new_types = data_types(¤t_types, signature)?;
expressions
.iter()
.enumerate()
.map(|(i, expr)| expr.clone().cast_to(&new_types[i], schema))
.collect::<Result<Vec<_>>>()
}
#[cfg(test)]
mod test {
use crate::type_coercion::{TypeCoercion, TypeCoercionRewriter};
use crate::{OptimizerConfig, OptimizerRule};
use arrow::datatypes::DataType;
use datafusion_common::{DFField, DFSchema, Result, ScalarValue};
use datafusion_expr::expr_rewriter::ExprRewritable;
use datafusion_expr::{cast, col, is_true, ColumnarValue};
use datafusion_expr::{
lit,
logical_plan::{EmptyRelation, Projection},
Expr, LogicalPlan, ReturnTypeFunction, ScalarFunctionImplementation, ScalarUDF,
Signature, Volatility,
};
use std::sync::Arc;
#[test]
fn simple_case() -> Result<()> {
let expr = col("a").lt(lit(2_u32));
let empty = Arc::new(LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(
DFSchema::new_with_metadata(
vec![DFField::new(None, "a", DataType::Float64, true)],
std::collections::HashMap::new(),
)
.unwrap(),
),
}));
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config)?;
assert_eq!(
"Projection: a < CAST(UInt32(2) AS Float64)\n EmptyRelation",
&format!("{:?}", plan)
);
Ok(())
}
#[test]
fn nested_case() -> Result<()> {
let expr = col("a").lt(lit(2_u32));
let empty = Arc::new(LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(
DFSchema::new_with_metadata(
vec![DFField::new(None, "a", DataType::Float64, true)],
std::collections::HashMap::new(),
)
.unwrap(),
),
}));
let plan = LogicalPlan::Projection(Projection::try_new(
vec![expr.clone().or(expr)],
empty,
None,
)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config)?;
assert_eq!(
"Projection: a < CAST(UInt32(2) AS Float64) OR a < CAST(UInt32(2) AS Float64)\
\n EmptyRelation",
&format!("{:?}", plan)
);
Ok(())
}
#[test]
fn scalar_udf() -> Result<()> {
let empty = empty();
let return_type: ReturnTypeFunction =
Arc::new(move |_| Ok(Arc::new(DataType::Utf8)));
let fun: ScalarFunctionImplementation =
Arc::new(move |_| Ok(ColumnarValue::Scalar(ScalarValue::new_utf8("a"))));
let udf = Expr::ScalarUDF {
fun: Arc::new(ScalarUDF::new(
"TestScalarUDF",
&Signature::uniform(1, vec![DataType::Float32], Volatility::Stable),
&return_type,
&fun,
)),
args: vec![lit(123_i32)],
};
let plan = LogicalPlan::Projection(Projection::try_new(vec![udf], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config)?;
assert_eq!(
"Projection: TestScalarUDF(CAST(Int32(123) AS Float32))\n EmptyRelation",
&format!("{:?}", plan)
);
Ok(())
}
#[test]
fn scalar_udf_invalid_input() -> Result<()> {
let empty = empty();
let return_type: ReturnTypeFunction =
Arc::new(move |_| Ok(Arc::new(DataType::Utf8)));
let fun: ScalarFunctionImplementation = Arc::new(move |_| unimplemented!());
let udf = Expr::ScalarUDF {
fun: Arc::new(ScalarUDF::new(
"TestScalarUDF",
&Signature::uniform(1, vec![DataType::Int32], Volatility::Stable),
&return_type,
&fun,
)),
args: vec![lit("Apple")],
};
let plan = LogicalPlan::Projection(Projection::try_new(vec![udf], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config).err().unwrap();
assert_eq!(
"Plan(\"Coercion from [Utf8] to the signature Uniform(1, [Int32]) failed.\")",
&format!("{:?}", plan)
);
Ok(())
}
#[test]
fn binary_op_date32_add_interval() -> Result<()> {
let expr = cast(lit("1998-03-18"), DataType::Date32)
+ lit(ScalarValue::IntervalDayTime(Some(386547056640)));
let empty = Arc::new(LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(DFSchema::empty()),
}));
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config)?;
assert_eq!(
"Projection: CAST(Utf8(\"1998-03-18\") AS Date32) + IntervalDayTime(\"386547056640\")\n EmptyRelation",
&format!("{:?}", plan)
);
Ok(())
}
#[test]
fn inlist_case() -> Result<()> {
let expr = col("a").in_list(vec![lit(1_i32), lit(4_i8), lit(8_i64)], false);
let empty = Arc::new(LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(
DFSchema::new_with_metadata(
vec![DFField::new(None, "a", DataType::Int64, true)],
std::collections::HashMap::new(),
)
.unwrap(),
),
}));
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config)?;
assert_eq!(
"Projection: a IN ([CAST(Int32(1) AS Int64), CAST(Int8(4) AS Int64), Int64(8)])\n EmptyRelation",
&format!("{:?}", plan)
);
let expr = col("a").in_list(vec![lit(1_i32), lit(4_i8), lit(8_i64)], false);
let empty = Arc::new(LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(
DFSchema::new_with_metadata(
vec![DFField::new(None, "a", DataType::Decimal128(12, 4), true)],
std::collections::HashMap::new(),
)
.unwrap(),
),
}));
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let plan = rule.optimize(&plan, &mut config)?;
assert_eq!(
"Projection: CAST(a AS Decimal128(24, 4)) IN ([CAST(Int32(1) AS Decimal128(24, 4)), CAST(Int8(4) AS Decimal128(24, 4)), CAST(Int64(8) AS Decimal128(24, 4))])\n EmptyRelation",
&format!("{:?}", plan)
);
Ok(())
}
#[test]
fn is_bool_for_type_coercion() -> Result<()> {
let expr = col("a").is_true();
let empty = empty_with_type(DataType::Boolean);
let plan = LogicalPlan::Projection(Projection::try_new(
vec![expr.clone()],
empty,
None,
)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config).unwrap();
assert_eq!(
"Projection: a IS TRUE\n EmptyRelation",
&format!("{:?}", plan)
);
let empty = empty_with_type(DataType::Int64);
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let plan = rule.optimize(&plan, &mut config);
assert!(plan.is_err());
assert!(plan.unwrap_err().to_string().contains("'Int64 IS DISTINCT FROM Boolean' can't be evaluated because there isn't a common type to coerce the types to"));
let expr = col("a").is_not_true();
let empty = empty_with_type(DataType::Boolean);
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let plan = rule.optimize(&plan, &mut config).unwrap();
assert_eq!(
"Projection: a IS NOT TRUE\n EmptyRelation",
&format!("{:?}", plan)
);
let expr = col("a").is_false();
let empty = empty_with_type(DataType::Boolean);
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let plan = rule.optimize(&plan, &mut config).unwrap();
assert_eq!(
"Projection: a IS FALSE\n EmptyRelation",
&format!("{:?}", plan)
);
let expr = col("a").is_not_false();
let empty = empty_with_type(DataType::Boolean);
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let plan = rule.optimize(&plan, &mut config).unwrap();
assert_eq!(
"Projection: a IS NOT FALSE\n EmptyRelation",
&format!("{:?}", plan)
);
Ok(())
}
#[test]
fn like_for_type_coercion() -> Result<()> {
let expr = Box::new(col("a"));
let pattern = Box::new(lit(ScalarValue::new_utf8("abc")));
let like_expr = Expr::Like {
negated: false,
expr,
pattern,
escape_char: None,
};
let empty = empty_with_type(DataType::Utf8);
let plan =
LogicalPlan::Projection(Projection::try_new(vec![like_expr], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config).unwrap();
assert_eq!(
"Projection: a LIKE Utf8(\"abc\")\n EmptyRelation",
&format!("{:?}", plan)
);
let expr = Box::new(col("a"));
let pattern = Box::new(lit(ScalarValue::Null));
let like_expr = Expr::Like {
negated: false,
expr,
pattern,
escape_char: None,
};
let empty = empty_with_type(DataType::Utf8);
let plan =
LogicalPlan::Projection(Projection::try_new(vec![like_expr], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config).unwrap();
assert_eq!(
"Projection: a LIKE CAST(NULL AS Utf8)\n EmptyRelation",
&format!("{:?}", plan)
);
let expr = Box::new(col("a"));
let pattern = Box::new(lit(ScalarValue::new_utf8("abc")));
let like_expr = Expr::Like {
negated: false,
expr,
pattern,
escape_char: None,
};
let empty = empty_with_type(DataType::Int64);
let plan =
LogicalPlan::Projection(Projection::try_new(vec![like_expr], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config);
assert!(plan.is_err());
assert!(plan.unwrap_err().to_string().contains("'Int64 LIKE Utf8' can't be evaluated because there isn't a common type to coerce the types to"));
Ok(())
}
#[test]
fn unknown_for_type_coercion() -> Result<()> {
let expr = col("a").is_unknown();
let empty = empty_with_type(DataType::Boolean);
let plan = LogicalPlan::Projection(Projection::try_new(
vec![expr.clone()],
empty,
None,
)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config).unwrap();
assert_eq!(
"Projection: a IS UNKNOWN\n EmptyRelation",
&format!("{:?}", plan)
);
let empty = empty_with_type(DataType::Utf8);
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config);
assert!(plan.is_err());
assert!(plan.unwrap_err().to_string().contains("'Utf8 IS NOT DISTINCT FROM Boolean' can't be evaluated because there isn't a common type to coerce the types to"));
let expr = col("a").is_not_unknown();
let empty = empty_with_type(DataType::Boolean);
let plan = LogicalPlan::Projection(Projection::try_new(vec![expr], empty, None)?);
let rule = TypeCoercion::new();
let mut config = OptimizerConfig::default();
let plan = rule.optimize(&plan, &mut config).unwrap();
assert_eq!(
"Projection: a IS NOT UNKNOWN\n EmptyRelation",
&format!("{:?}", plan)
);
Ok(())
}
fn empty() -> Arc<LogicalPlan> {
Arc::new(LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(DFSchema::empty()),
}))
}
fn empty_with_type(data_type: DataType) -> Arc<LogicalPlan> {
Arc::new(LogicalPlan::EmptyRelation(EmptyRelation {
produce_one_row: false,
schema: Arc::new(
DFSchema::new_with_metadata(
vec![DFField::new(None, "a", data_type, true)],
std::collections::HashMap::new(),
)
.unwrap(),
),
}))
}
#[test]
fn test_type_coercion_rewrite() -> Result<()> {
let schema = Arc::new(
DFSchema::new_with_metadata(
vec![DFField::new(None, "a", DataType::Int64, true)],
std::collections::HashMap::new(),
)
.unwrap(),
);
let mut rewriter = TypeCoercionRewriter { schema };
let expr = is_true(lit(12i32).eq(lit(13i64)));
let expected = is_true(cast(lit(12i32), DataType::Int64).eq(lit(13i64)));
let result = expr.rewrite(&mut rewriter)?;
assert_eq!(expected, result);
Ok(())
}
}