Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
datafusion-expr 40.0.0 - Docs.rs
[go: Go Back, main page]

datafusion-expr 40.0.0

Logical plan and expression representation for DataFusion query engine
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::ops::Deref;

use arrow::datatypes::{
    DataType, TimeUnit, DECIMAL128_MAX_PRECISION, DECIMAL128_MAX_SCALE,
    DECIMAL256_MAX_PRECISION, DECIMAL256_MAX_SCALE,
};

use datafusion_common::{internal_err, plan_err, Result};

use crate::{AggregateFunction, Signature, TypeSignature};

pub static STRINGS: &[DataType] = &[DataType::Utf8, DataType::LargeUtf8];

pub static SIGNED_INTEGERS: &[DataType] = &[
    DataType::Int8,
    DataType::Int16,
    DataType::Int32,
    DataType::Int64,
];

pub static UNSIGNED_INTEGERS: &[DataType] = &[
    DataType::UInt8,
    DataType::UInt16,
    DataType::UInt32,
    DataType::UInt64,
];

pub static INTEGERS: &[DataType] = &[
    DataType::Int8,
    DataType::Int16,
    DataType::Int32,
    DataType::Int64,
    DataType::UInt8,
    DataType::UInt16,
    DataType::UInt32,
    DataType::UInt64,
];

pub static NUMERICS: &[DataType] = &[
    DataType::Int8,
    DataType::Int16,
    DataType::Int32,
    DataType::Int64,
    DataType::UInt8,
    DataType::UInt16,
    DataType::UInt32,
    DataType::UInt64,
    DataType::Float32,
    DataType::Float64,
];

pub static TIMESTAMPS: &[DataType] = &[
    DataType::Timestamp(TimeUnit::Second, None),
    DataType::Timestamp(TimeUnit::Millisecond, None),
    DataType::Timestamp(TimeUnit::Microsecond, None),
    DataType::Timestamp(TimeUnit::Nanosecond, None),
];

pub static DATES: &[DataType] = &[DataType::Date32, DataType::Date64];

pub static BINARYS: &[DataType] = &[DataType::Binary, DataType::LargeBinary];

pub static TIMES: &[DataType] = &[
    DataType::Time32(TimeUnit::Second),
    DataType::Time32(TimeUnit::Millisecond),
    DataType::Time64(TimeUnit::Microsecond),
    DataType::Time64(TimeUnit::Nanosecond),
];

/// Returns the coerced data type for each `input_types`.
/// Different aggregate function with different input data type will get corresponding coerced data type.
pub fn coerce_types(
    agg_fun: &AggregateFunction,
    input_types: &[DataType],
    signature: &Signature,
) -> Result<Vec<DataType>> {
    // Validate input_types matches (at least one of) the func signature.
    check_arg_count(agg_fun.name(), input_types, &signature.type_signature)?;

    match agg_fun {
        AggregateFunction::ArrayAgg => Ok(input_types.to_vec()),
        AggregateFunction::Min | AggregateFunction::Max => {
            // min and max support the dictionary data type
            // unpack the dictionary to get the value
            get_min_max_result_type(input_types)
        }
    }
}

/// Validate the length of `input_types` matches the `signature` for `agg_fun`.
///
/// This method DOES NOT validate the argument types - only that (at least one,
/// in the case of [`TypeSignature::OneOf`]) signature matches the desired
/// number of input types.
pub fn check_arg_count(
    func_name: &str,
    input_types: &[DataType],
    signature: &TypeSignature,
) -> Result<()> {
    match signature {
        TypeSignature::Uniform(agg_count, _) | TypeSignature::Any(agg_count) => {
            if input_types.len() != *agg_count {
                return plan_err!(
                    "The function {func_name} expects {:?} arguments, but {:?} were provided",
                    agg_count,
                    input_types.len()
                );
            }
        }
        TypeSignature::Exact(types) => {
            if types.len() != input_types.len() {
                return plan_err!(
                    "The function {func_name} expects {:?} arguments, but {:?} were provided",
                    types.len(),
                    input_types.len()
                );
            }
        }
        TypeSignature::OneOf(variants) => {
            let ok = variants
                .iter()
                .any(|v| check_arg_count(func_name, input_types, v).is_ok());
            if !ok {
                return plan_err!(
                    "The function {func_name} does not accept {:?} function arguments.",
                    input_types.len()
                );
            }
        }
        TypeSignature::VariadicAny => {
            if input_types.is_empty() {
                return plan_err!(
                    "The function {func_name} expects at least one argument"
                );
            }
        }
        TypeSignature::UserDefined | TypeSignature::Numeric(_) => {
            // User-defined signature is validated in `coerce_types`
            // Numreic signature is validated in `get_valid_types`
        }
        _ => {
            return internal_err!(
                "Aggregate functions do not support this {signature:?}"
            );
        }
    }
    Ok(())
}

fn get_min_max_result_type(input_types: &[DataType]) -> Result<Vec<DataType>> {
    // make sure that the input types only has one element.
    assert_eq!(input_types.len(), 1);
    // min and max support the dictionary data type
    // unpack the dictionary to get the value
    match &input_types[0] {
        DataType::Dictionary(_, dict_value_type) => {
            // TODO add checker, if the value type is complex data type
            Ok(vec![dict_value_type.deref().clone()])
        }
        // TODO add checker for datatype which min and max supported
        // For example, the `Struct` and `Map` type are not supported in the MIN and MAX function
        _ => Ok(input_types.to_vec()),
    }
}

/// function return type of a sum
pub fn sum_return_type(arg_type: &DataType) -> Result<DataType> {
    match arg_type {
        DataType::Int64 => Ok(DataType::Int64),
        DataType::UInt64 => Ok(DataType::UInt64),
        DataType::Float64 => Ok(DataType::Float64),
        DataType::Decimal128(precision, scale) => {
            // in the spark, the result type is DECIMAL(min(38,precision+10), s)
            // ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
            let new_precision = DECIMAL128_MAX_PRECISION.min(*precision + 10);
            Ok(DataType::Decimal128(new_precision, *scale))
        }
        DataType::Decimal256(precision, scale) => {
            // in the spark, the result type is DECIMAL(min(38,precision+10), s)
            // ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
            let new_precision = DECIMAL256_MAX_PRECISION.min(*precision + 10);
            Ok(DataType::Decimal256(new_precision, *scale))
        }
        other => plan_err!("SUM does not support type \"{other:?}\""),
    }
}

/// function return type of variance
pub fn variance_return_type(arg_type: &DataType) -> Result<DataType> {
    if NUMERICS.contains(arg_type) {
        Ok(DataType::Float64)
    } else {
        plan_err!("VAR does not support {arg_type:?}")
    }
}

/// function return type of covariance
pub fn covariance_return_type(arg_type: &DataType) -> Result<DataType> {
    if NUMERICS.contains(arg_type) {
        Ok(DataType::Float64)
    } else {
        plan_err!("COVAR does not support {arg_type:?}")
    }
}

/// function return type of correlation
pub fn correlation_return_type(arg_type: &DataType) -> Result<DataType> {
    if NUMERICS.contains(arg_type) {
        Ok(DataType::Float64)
    } else {
        plan_err!("CORR does not support {arg_type:?}")
    }
}

/// function return type of an average
pub fn avg_return_type(func_name: &str, arg_type: &DataType) -> Result<DataType> {
    match arg_type {
        DataType::Decimal128(precision, scale) => {
            // in the spark, the result type is DECIMAL(min(38,precision+4), min(38,scale+4)).
            // ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Average.scala#L66
            let new_precision = DECIMAL128_MAX_PRECISION.min(*precision + 4);
            let new_scale = DECIMAL128_MAX_SCALE.min(*scale + 4);
            Ok(DataType::Decimal128(new_precision, new_scale))
        }
        DataType::Decimal256(precision, scale) => {
            // in the spark, the result type is DECIMAL(min(38,precision+4), min(38,scale+4)).
            // ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Average.scala#L66
            let new_precision = DECIMAL256_MAX_PRECISION.min(*precision + 4);
            let new_scale = DECIMAL256_MAX_SCALE.min(*scale + 4);
            Ok(DataType::Decimal256(new_precision, new_scale))
        }
        arg_type if NUMERICS.contains(arg_type) => Ok(DataType::Float64),
        DataType::Dictionary(_, dict_value_type) => {
            avg_return_type(func_name, dict_value_type.as_ref())
        }
        other => plan_err!("{func_name} does not support {other:?}"),
    }
}

/// internal sum type of an average
pub fn avg_sum_type(arg_type: &DataType) -> Result<DataType> {
    match arg_type {
        DataType::Decimal128(precision, scale) => {
            // in the spark, the sum type of avg is DECIMAL(min(38,precision+10), s)
            let new_precision = DECIMAL128_MAX_PRECISION.min(*precision + 10);
            Ok(DataType::Decimal128(new_precision, *scale))
        }
        DataType::Decimal256(precision, scale) => {
            // in Spark the sum type of avg is DECIMAL(min(38,precision+10), s)
            let new_precision = DECIMAL256_MAX_PRECISION.min(*precision + 10);
            Ok(DataType::Decimal256(new_precision, *scale))
        }
        arg_type if NUMERICS.contains(arg_type) => Ok(DataType::Float64),
        DataType::Dictionary(_, dict_value_type) => {
            avg_sum_type(dict_value_type.as_ref())
        }
        other => plan_err!("AVG does not support {other:?}"),
    }
}

pub fn is_sum_support_arg_type(arg_type: &DataType) -> bool {
    match arg_type {
        DataType::Dictionary(_, dict_value_type) => {
            is_sum_support_arg_type(dict_value_type.as_ref())
        }
        _ => matches!(
            arg_type,
            arg_type if NUMERICS.contains(arg_type)
            || matches!(arg_type, DataType::Decimal128(_, _) | DataType::Decimal256(_, _))
        ),
    }
}

pub fn is_avg_support_arg_type(arg_type: &DataType) -> bool {
    match arg_type {
        DataType::Dictionary(_, dict_value_type) => {
            is_avg_support_arg_type(dict_value_type.as_ref())
        }
        _ => matches!(
            arg_type,
            arg_type if NUMERICS.contains(arg_type)
                || matches!(arg_type, DataType::Decimal128(_, _)| DataType::Decimal256(_, _))
        ),
    }
}

pub fn is_variance_support_arg_type(arg_type: &DataType) -> bool {
    matches!(
        arg_type,
        arg_type if NUMERICS.contains(arg_type)
    )
}

pub fn is_covariance_support_arg_type(arg_type: &DataType) -> bool {
    matches!(
        arg_type,
        arg_type if NUMERICS.contains(arg_type)
    )
}

pub fn is_correlation_support_arg_type(arg_type: &DataType) -> bool {
    matches!(
        arg_type,
        arg_type if NUMERICS.contains(arg_type)
    )
}

pub fn is_integer_arg_type(arg_type: &DataType) -> bool {
    arg_type.is_integer()
}

pub fn coerce_avg_type(func_name: &str, arg_types: &[DataType]) -> Result<Vec<DataType>> {
    // Supported types smallint, int, bigint, real, double precision, decimal, or interval
    // Refer to https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
    fn coerced_type(func_name: &str, data_type: &DataType) -> Result<DataType> {
        return match &data_type {
            DataType::Decimal128(p, s) => Ok(DataType::Decimal128(*p, *s)),
            DataType::Decimal256(p, s) => Ok(DataType::Decimal256(*p, *s)),
            d if d.is_numeric() => Ok(DataType::Float64),
            DataType::Dictionary(_, v) => return coerced_type(func_name, v.as_ref()),
            _ => {
                return plan_err!(
                    "The function {:?} does not support inputs of type {:?}.",
                    func_name,
                    data_type
                )
            }
        };
    }
    Ok(vec![coerced_type(func_name, &arg_types[0])?])
}
#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn test_aggregate_coerce_types() {
        // test input args with error number input types
        let fun = AggregateFunction::Min;
        let input_types = vec![DataType::Int64, DataType::Int32];
        let signature = fun.signature();
        let result = coerce_types(&fun, &input_types, &signature);
        assert_eq!("Error during planning: The function MIN expects 1 arguments, but 2 were provided", result.unwrap_err().strip_backtrace());

        // test count, array_agg, approx_distinct, min, max.
        // the coerced types is same with input types
        let funs = vec![
            AggregateFunction::ArrayAgg,
            AggregateFunction::Min,
            AggregateFunction::Max,
        ];
        let input_types = vec![
            vec![DataType::Int32],
            vec![DataType::Decimal128(10, 2)],
            vec![DataType::Decimal256(1, 1)],
            vec![DataType::Utf8],
        ];
        for fun in funs {
            for input_type in &input_types {
                let signature = fun.signature();
                let result = coerce_types(&fun, input_type, &signature);
                assert_eq!(*input_type, result.unwrap());
            }
        }
    }

    #[test]
    fn test_variance_return_data_type() -> Result<()> {
        let data_type = DataType::Float64;
        let result_type = variance_return_type(&data_type)?;
        assert_eq!(DataType::Float64, result_type);

        let data_type = DataType::Decimal128(36, 10);
        assert!(variance_return_type(&data_type).is_err());
        Ok(())
    }

    #[test]
    fn test_sum_return_data_type() -> Result<()> {
        let data_type = DataType::Decimal128(10, 5);
        let result_type = sum_return_type(&data_type)?;
        assert_eq!(DataType::Decimal128(20, 5), result_type);

        let data_type = DataType::Decimal128(36, 10);
        let result_type = sum_return_type(&data_type)?;
        assert_eq!(DataType::Decimal128(38, 10), result_type);
        Ok(())
    }

    #[test]
    fn test_covariance_return_data_type() -> Result<()> {
        let data_type = DataType::Float64;
        let result_type = covariance_return_type(&data_type)?;
        assert_eq!(DataType::Float64, result_type);

        let data_type = DataType::Decimal128(36, 10);
        assert!(covariance_return_type(&data_type).is_err());
        Ok(())
    }

    #[test]
    fn test_correlation_return_data_type() -> Result<()> {
        let data_type = DataType::Float64;
        let result_type = correlation_return_type(&data_type)?;
        assert_eq!(DataType::Float64, result_type);

        let data_type = DataType::Decimal128(36, 10);
        assert!(correlation_return_type(&data_type).is_err());
        Ok(())
    }
}