Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
datafusion-functions-aggregate 49.0.0 - Docs.rs
[go: Go Back, main page]

datafusion-functions-aggregate 49.0.0

Traits and types for logical plans and expressions for DataFusion query engine
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines NTH_VALUE aggregate expression which may specify ordering requirement
//! that can evaluated at runtime during query execution

use std::any::Any;
use std::collections::VecDeque;
use std::mem::{size_of, size_of_val};
use std::sync::Arc;

use arrow::array::{new_empty_array, ArrayRef, AsArray, StructArray};
use arrow::datatypes::{DataType, Field, FieldRef, Fields};

use datafusion_common::utils::{get_row_at_idx, SingleRowListArrayBuilder};
use datafusion_common::{exec_err, internal_err, not_impl_err, Result, ScalarValue};
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
use datafusion_expr::utils::format_state_name;
use datafusion_expr::{
    lit, Accumulator, AggregateUDFImpl, Documentation, ExprFunctionExt, ReversedUDAF,
    Signature, SortExpr, Volatility,
};
use datafusion_functions_aggregate_common::merge_arrays::merge_ordered_arrays;
use datafusion_functions_aggregate_common::utils::ordering_fields;
use datafusion_macros::user_doc;
use datafusion_physical_expr::expressions::Literal;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, PhysicalSortExpr};

create_func!(NthValueAgg, nth_value_udaf);

/// Returns the nth value in a group of values.
pub fn nth_value(
    expr: datafusion_expr::Expr,
    n: i64,
    order_by: Vec<SortExpr>,
) -> datafusion_expr::Expr {
    let args = vec![expr, lit(n)];
    if !order_by.is_empty() {
        nth_value_udaf()
            .call(args)
            .order_by(order_by)
            .build()
            .unwrap()
    } else {
        nth_value_udaf().call(args)
    }
}

#[user_doc(
    doc_section(label = "Statistical Functions"),
    description = "Returns the nth value in a group of values.",
    syntax_example = "nth_value(expression, n ORDER BY expression)",
    sql_example = r#"```sql
> SELECT dept_id, salary, NTH_VALUE(salary, 2) OVER (PARTITION BY dept_id ORDER BY salary ASC) AS second_salary_by_dept
  FROM employee;
+---------+--------+-------------------------+
| dept_id | salary | second_salary_by_dept   |
+---------+--------+-------------------------+
| 1       | 30000  | NULL                    |
| 1       | 40000  | 40000                   |
| 1       | 50000  | 40000                   |
| 2       | 35000  | NULL                    |
| 2       | 45000  | 45000                   |
+---------+--------+-------------------------+
```"#,
    argument(
        name = "expression",
        description = "The column or expression to retrieve the nth value from."
    ),
    argument(
        name = "n",
        description = "The position (nth) of the value to retrieve, based on the ordering."
    )
)]
/// Expression for a `NTH_VALUE(..., ... ORDER BY ...)` aggregation. In a multi
/// partition setting, partial aggregations are computed for every partition,
/// and then their results are merged.
#[derive(Debug)]
pub struct NthValueAgg {
    signature: Signature,
}

impl NthValueAgg {
    /// Create a new `NthValueAgg` aggregate function
    pub fn new() -> Self {
        Self {
            signature: Signature::any(2, Volatility::Immutable),
        }
    }
}

impl Default for NthValueAgg {
    fn default() -> Self {
        Self::new()
    }
}

impl AggregateUDFImpl for NthValueAgg {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn name(&self) -> &str {
        "nth_value"
    }

    fn signature(&self) -> &Signature {
        &self.signature
    }

    fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
        Ok(arg_types[0].clone())
    }

    fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
        let n = match acc_args.exprs[1]
            .as_any()
            .downcast_ref::<Literal>()
            .map(|lit| lit.value())
        {
            Some(ScalarValue::Int64(Some(value))) => {
                if acc_args.is_reversed {
                    -*value
                } else {
                    *value
                }
            }
            _ => {
                return not_impl_err!(
                    "{} not supported for n: {}",
                    self.name(),
                    &acc_args.exprs[1]
                )
            }
        };

        let Some(ordering) = LexOrdering::new(acc_args.order_bys.to_vec()) else {
            return TrivialNthValueAccumulator::try_new(
                n,
                acc_args.return_field.data_type(),
            )
            .map(|acc| Box::new(acc) as _);
        };
        let ordering_dtypes = ordering
            .iter()
            .map(|e| e.expr.data_type(acc_args.schema))
            .collect::<Result<Vec<_>>>()?;

        let data_type = acc_args.exprs[0].data_type(acc_args.schema)?;
        NthValueAccumulator::try_new(n, &data_type, &ordering_dtypes, ordering)
            .map(|acc| Box::new(acc) as _)
    }

    fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
        let mut fields = vec![Field::new_list(
            format_state_name(self.name(), "nth_value"),
            // See COMMENTS.md to understand why nullable is set to true
            Field::new_list_field(args.input_fields[0].data_type().clone(), true),
            false,
        )];
        let orderings = args.ordering_fields.to_vec();
        if !orderings.is_empty() {
            fields.push(Field::new_list(
                format_state_name(self.name(), "nth_value_orderings"),
                Field::new_list_field(DataType::Struct(Fields::from(orderings)), true),
                false,
            ));
        }
        Ok(fields.into_iter().map(Arc::new).collect())
    }

    fn reverse_expr(&self) -> ReversedUDAF {
        ReversedUDAF::Reversed(nth_value_udaf())
    }

    fn documentation(&self) -> Option<&Documentation> {
        self.doc()
    }
}

#[derive(Debug)]
pub struct TrivialNthValueAccumulator {
    /// The `N` value.
    n: i64,
    /// Stores entries in the `NTH_VALUE` result.
    values: VecDeque<ScalarValue>,
    /// Data types of the value.
    datatype: DataType,
}

impl TrivialNthValueAccumulator {
    /// Create a new order-insensitive NTH_VALUE accumulator based on the given
    /// item data type.
    pub fn try_new(n: i64, datatype: &DataType) -> Result<Self> {
        if n == 0 {
            // n cannot be 0
            return internal_err!("Nth value indices are 1 based. 0 is invalid index");
        }
        Ok(Self {
            n,
            values: VecDeque::new(),
            datatype: datatype.clone(),
        })
    }

    /// Updates state, with the `values`. Fetch contains missing number of entries for state to be complete
    /// None represents all of the new `values` need to be added to the state.
    fn append_new_data(
        &mut self,
        values: &[ArrayRef],
        fetch: Option<usize>,
    ) -> Result<()> {
        let n_row = values[0].len();
        let n_to_add = if let Some(fetch) = fetch {
            std::cmp::min(fetch, n_row)
        } else {
            n_row
        };
        for index in 0..n_to_add {
            let mut row = get_row_at_idx(values, index)?;
            self.values.push_back(row.swap_remove(0));
            // At index 1, we have n index argument, which is constant.
        }
        Ok(())
    }
}

impl Accumulator for TrivialNthValueAccumulator {
    /// Updates its state with the `values`. Assumes data in the `values` satisfies the required
    /// ordering for the accumulator (across consecutive batches, not just batch-wise).
    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        if !values.is_empty() {
            let n_required = self.n.unsigned_abs() as usize;
            let from_start = self.n > 0;
            if from_start {
                // direction is from start
                let n_remaining = n_required.saturating_sub(self.values.len());
                self.append_new_data(values, Some(n_remaining))?;
            } else {
                // direction is from end
                self.append_new_data(values, None)?;
                let start_offset = self.values.len().saturating_sub(n_required);
                if start_offset > 0 {
                    self.values.drain(0..start_offset);
                }
            }
        }
        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        if !states.is_empty() {
            // First entry in the state is the aggregation result.
            let n_required = self.n.unsigned_abs() as usize;
            let array_agg_res = ScalarValue::convert_array_to_scalar_vec(&states[0])?;
            for v in array_agg_res.into_iter() {
                self.values.extend(v);
                if self.values.len() > n_required {
                    // There is enough data collected, can stop merging:
                    break;
                }
            }
        }
        Ok(())
    }

    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        let mut values_cloned = self.values.clone();
        let values_slice = values_cloned.make_contiguous();
        Ok(vec![ScalarValue::List(ScalarValue::new_list_nullable(
            values_slice,
            &self.datatype,
        ))])
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        let n_required = self.n.unsigned_abs() as usize;
        let from_start = self.n > 0;
        let nth_value_idx = if from_start {
            // index is from start
            let forward_idx = n_required - 1;
            (forward_idx < self.values.len()).then_some(forward_idx)
        } else {
            // index is from end
            self.values.len().checked_sub(n_required)
        };
        if let Some(idx) = nth_value_idx {
            Ok(self.values[idx].clone())
        } else {
            ScalarValue::try_from(self.datatype.clone())
        }
    }

    fn size(&self) -> usize {
        size_of_val(self) + ScalarValue::size_of_vec_deque(&self.values)
            - size_of_val(&self.values)
            + size_of::<DataType>()
    }
}

#[derive(Debug)]
pub struct NthValueAccumulator {
    /// The `N` value.
    n: i64,
    /// Stores entries in the `NTH_VALUE` result.
    values: VecDeque<ScalarValue>,
    /// Stores values of ordering requirement expressions corresponding to each
    /// entry in `values`. This information is used when merging results from
    /// different partitions. For detailed information how merging is done, see
    /// [`merge_ordered_arrays`].
    ordering_values: VecDeque<Vec<ScalarValue>>,
    /// Stores datatypes of expressions inside values and ordering requirement
    /// expressions.
    datatypes: Vec<DataType>,
    /// Stores the ordering requirement of the `Accumulator`.
    ordering_req: LexOrdering,
}

impl NthValueAccumulator {
    /// Create a new order-sensitive NTH_VALUE accumulator based on the given
    /// item data type.
    pub fn try_new(
        n: i64,
        datatype: &DataType,
        ordering_dtypes: &[DataType],
        ordering_req: LexOrdering,
    ) -> Result<Self> {
        if n == 0 {
            // n cannot be 0
            return internal_err!("Nth value indices are 1 based. 0 is invalid index");
        }
        let mut datatypes = vec![datatype.clone()];
        datatypes.extend(ordering_dtypes.iter().cloned());
        Ok(Self {
            n,
            values: VecDeque::new(),
            ordering_values: VecDeque::new(),
            datatypes,
            ordering_req,
        })
    }

    fn evaluate_orderings(&self) -> Result<ScalarValue> {
        let fields = ordering_fields(&self.ordering_req, &self.datatypes[1..]);

        let mut column_wise_ordering_values = vec![];
        let num_columns = fields.len();
        for i in 0..num_columns {
            let column_values = self
                .ordering_values
                .iter()
                .map(|x| x[i].clone())
                .collect::<Vec<_>>();
            let array = if column_values.is_empty() {
                new_empty_array(fields[i].data_type())
            } else {
                ScalarValue::iter_to_array(column_values.into_iter())?
            };
            column_wise_ordering_values.push(array);
        }

        let struct_field = Fields::from(fields);
        let ordering_array =
            StructArray::try_new(struct_field, column_wise_ordering_values, None)?;

        Ok(SingleRowListArrayBuilder::new(Arc::new(ordering_array)).build_list_scalar())
    }

    fn evaluate_values(&self) -> ScalarValue {
        let mut values_cloned = self.values.clone();
        let values_slice = values_cloned.make_contiguous();
        ScalarValue::List(ScalarValue::new_list_nullable(
            values_slice,
            &self.datatypes[0],
        ))
    }

    /// Updates state, with the `values`. Fetch contains missing number of entries for state to be complete
    /// None represents all of the new `values` need to be added to the state.
    fn append_new_data(
        &mut self,
        values: &[ArrayRef],
        fetch: Option<usize>,
    ) -> Result<()> {
        let n_row = values[0].len();
        let n_to_add = if let Some(fetch) = fetch {
            std::cmp::min(fetch, n_row)
        } else {
            n_row
        };
        for index in 0..n_to_add {
            let row = get_row_at_idx(values, index)?;
            self.values.push_back(row[0].clone());
            // At index 1, we have n index argument.
            // Ordering values cover starting from 2nd index to end
            self.ordering_values.push_back(row[2..].to_vec());
        }
        Ok(())
    }
}

impl Accumulator for NthValueAccumulator {
    /// Updates its state with the `values`. Assumes data in the `values` satisfies the required
    /// ordering for the accumulator (across consecutive batches, not just batch-wise).
    fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
        if values.is_empty() {
            return Ok(());
        }

        let n_required = self.n.unsigned_abs() as usize;
        let from_start = self.n > 0;
        if from_start {
            // direction is from start
            let n_remaining = n_required.saturating_sub(self.values.len());
            self.append_new_data(values, Some(n_remaining))?;
        } else {
            // direction is from end
            self.append_new_data(values, None)?;
            let start_offset = self.values.len().saturating_sub(n_required);
            if start_offset > 0 {
                self.values.drain(0..start_offset);
                self.ordering_values.drain(0..start_offset);
            }
        }

        Ok(())
    }

    fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
        if states.is_empty() {
            return Ok(());
        }
        // Second entry stores values received for ordering requirement columns
        // for each aggregation value inside NTH_VALUE list. For each `StructArray`
        // inside this list, we will receive an `Array` that stores values received
        // from its ordering requirement expression. This information is necessary
        // during merging.
        let Some(agg_orderings) = states[1].as_list_opt::<i32>() else {
            return exec_err!("Expects to receive a list array");
        };

        // Stores NTH_VALUE results coming from each partition
        let mut partition_values = vec![self.values.clone()];
        // First entry in the state is the aggregation result.
        let array_agg_res = ScalarValue::convert_array_to_scalar_vec(&states[0])?;
        for v in array_agg_res.into_iter() {
            partition_values.push(v.into());
        }
        // Stores ordering requirement expression results coming from each partition:
        let mut partition_ordering_values = vec![self.ordering_values.clone()];
        let orderings = ScalarValue::convert_array_to_scalar_vec(agg_orderings)?;
        // Extract value from struct to ordering_rows for each group/partition:
        for partition_ordering_rows in orderings.into_iter() {
            let ordering_values = partition_ordering_rows.into_iter().map(|ordering_row| {
                let ScalarValue::Struct(s_array) = ordering_row else {
                    return exec_err!(
                        "Expects to receive ScalarValue::Struct(Some(..), _) but got: {:?}",
                        ordering_row.data_type()
                    );
                };
                s_array
                    .columns()
                    .iter()
                    .map(|column| ScalarValue::try_from_array(column, 0))
                    .collect()
            }).collect::<Result<VecDeque<_>>>()?;
            partition_ordering_values.push(ordering_values);
        }

        let sort_options = self
            .ordering_req
            .iter()
            .map(|sort_expr| sort_expr.options)
            .collect::<Vec<_>>();
        let (new_values, new_orderings) = merge_ordered_arrays(
            &mut partition_values,
            &mut partition_ordering_values,
            &sort_options,
        )?;
        self.values = new_values.into();
        self.ordering_values = new_orderings.into();
        Ok(())
    }

    fn state(&mut self) -> Result<Vec<ScalarValue>> {
        Ok(vec![self.evaluate_values(), self.evaluate_orderings()?])
    }

    fn evaluate(&mut self) -> Result<ScalarValue> {
        let n_required = self.n.unsigned_abs() as usize;
        let from_start = self.n > 0;
        let nth_value_idx = if from_start {
            // index is from start
            let forward_idx = n_required - 1;
            (forward_idx < self.values.len()).then_some(forward_idx)
        } else {
            // index is from end
            self.values.len().checked_sub(n_required)
        };
        if let Some(idx) = nth_value_idx {
            Ok(self.values[idx].clone())
        } else {
            ScalarValue::try_from(self.datatypes[0].clone())
        }
    }

    fn size(&self) -> usize {
        let mut total = size_of_val(self) + ScalarValue::size_of_vec_deque(&self.values)
            - size_of_val(&self.values);

        // Add size of the `self.ordering_values`
        total += size_of::<Vec<ScalarValue>>() * self.ordering_values.capacity();
        for row in &self.ordering_values {
            total += ScalarValue::size_of_vec(row) - size_of_val(row);
        }

        // Add size of the `self.datatypes`
        total += size_of::<DataType>() * self.datatypes.capacity();
        for dtype in &self.datatypes {
            total += dtype.size() - size_of_val(dtype);
        }

        // Add size of the `self.ordering_req`
        total += size_of::<PhysicalSortExpr>() * self.ordering_req.capacity();
        // TODO: Calculate size of each `PhysicalSortExpr` more accurately.
        total
    }
}