Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
hfmlsoc (Hugging Face ML & Society Team)
[go: Go Back, main page]

\n\n# Welcome to the Hugging Face ML & Society Team Page!\n\nWe're a multidisciplinary team working on research and regulatory questions related to AI systems — their (open) development, governance, and impact on society at large.\n\n## Team Members\n\n- [Yacine Jernite](https://huggingface.co/yjernite), Head of ML & Society\n- [Sasha Luccioni](https://huggingface.co/sasha), AI & Climate Lead\n- [Giada Pistilli](https://huggingface.co/giadap), Principal Ethicist\n- [Lucie-Aimée Kaffee](https://huggingface.co/frimelle), Applied Policy Researcher, EU Policy\n\nWe also work closely with [Irene Solaiman](https://huggingface.co/irenesolaiman) (Chief Policy Officer),\nand [Avijit Ghosh](https://huggingface.co/evijit), (Applied Policy Researcher) in the policy team,\nand with [Meg Mitchell](https://huggingface.co/meg) (Chief Ethics Scientist), and [Bruna Trevelin](https://huggingface.co/brunatrevelin) (Legal Counsel) on various topics!\n\n## Resources\n\n### Team's Blog Posts\n\nSee a non-exhaustive list of our team's recent writings below:\n\n
\n \n Click to expand\n \n Recent blog posts:\n \n - [What kind of environmental impacts are AI companies disclosing? (And can we compare them?)| 09/17/2025](https://huggingface.co/blog/sasha/environmental-impact-disclosures)\n - [Advertisement, Privacy, and Intimacy: Lessons from Social Media for Conversational AI | 09/01/25](https://huggingface.co/blog/giadap/privacy-conversational-ai)\n - [Old Maps, New Terrain: Updating Labour Taxonomies for the AI Era | 08/20/2025](https://huggingface.co/blog/frimelle/ai-labour-taxonomies)\n - [The GPT-OSS models are here… and they’re energy-efficient! | 08/07/25](https://huggingface.co/blog/sasha/gpt-oss-energy)\n - [How Your Utility Bills Are Subsidizing Power-Hungry AI | 08/06/25](https://www.techpolicy.press/how-your-utility-bills-are-subsidizing-power-hungry-ai/)\n - [What Open-Source Developers Need to Know about the EU AI Act's Rules for GPAI Models | 08/04/25](https://huggingface.co/blog/yjernite/eu-act-os-guideai)\n - [AI Companionship: Why We Need to Evaluate How AI Systems Handle Emotional Bonds |07/21/25](https://huggingface.co/blog/giadap/evaluating-companionship)\n - [What is the Hugging Face Community Building? | 07/15/25](https://huggingface.co/blog/evijit/hf-hub-ecosystem-overview)\n - [Can AI Be Consentful? Rethinking Permission in the Age of Synthetic Everything | 07/08/25](https://huggingface.co/blog/giadap/consentful-ai)\n - [How Much Power does a SOTA Open Video Model Use? ⚡🎥 | 07/02/25](https://huggingface.co/blog/jdelavande/text-to-video-energy-cost)\n - [Whose Voice Do We Hear When AI Speaks? | 06/20/25](https://huggingface.co/blog/giadap/when-ai-speaks)\n - [Open Source AI: A Cornerstone of Digital Sovereignty | 06/11/25](https://huggingface.co/blog/frimelle/sovereignty-and-open-source)\n - [AI Policy @🤗: Response to the 2025 National AI R&D Strategic Plan | 06/02/25](https://huggingface.co/blog/evijit/us-ai-research-strategy-rfi)\n - [Bigger isn't always better: how to choose the most efficient model for context-specific tasks 🌱🧑🏼‍💻 | 05/28/25](https://huggingface.co/blog/sasha/energy-efficiency-bigger-better)\n - [Highlights from the First ICLR 2025 Watermarking Workshop | 05/14/25](https://huggingface.co/blog/hadyelsahar/watermarking-iclr2025)\n - [AI Personas: The Impact of Design Choices | 05/07/25](https://huggingface.co/blog/giadap/ai-personas)\n - [Reduce, Reuse, Recycle: Why Open Source is a Win for Sustainability | 05/07/25](https://huggingface.co/blog/sasha/reduce-reuse-recycle)\n - [Consent by Design: Approaches to User Data in Open AI Ecosystems | 04/17/25](https://huggingface.co/blog/giadap/consent-by-design)\n - [AI Models Hiding Their Energy Footprint? Here’s What You Can Do| 04/14/25](https://huggingface.co/blog/sasha/energy-score-call-to-action)\n - [Empowering Public Organizations: Preparing Your Data for the AI Era | 04/10/25](https://huggingface.co/blog/evijit/public-org-data-ai)\n - [Are AI Agents Sustainable? It depends | 04/07/25](https://huggingface.co/blog/sasha/ai-agent-sustainability)\n - [I Clicked “I Agree”, But What Am I Really Consenting To? | 03/26/25](https://huggingface.co/blog/giadap/beyond-consent)\n - [AI Policy @🤗: Response to the White House AI Action Plan RFI | 03/19/25](https://huggingface.co/blog/ai-action-wh-2025)\n - [🇪🇺 EU AI Act: Comments on the Third Code of Practice Draft 🇪🇺 | 03/13/25](https://huggingface.co/blog/frimelle/eu-third-cop-draft)\n - [Announcing AI Energy Score Ratings | 02/11/25](https://huggingface.co/blog/sasha/announcing-ai-energy-score)\n - [Announcing the winners of the Frugal AI Challenge 🌱 | 02/11/25](https://huggingface.co/blog/frugal-ai-challenge/announcing-the-challenge-winners)\n - [From Hippocrates to AI: Reflections on the Evolution of Consent | 02/04/25](https://huggingface.co/blog/giadap/evolution-of-consent)\n - [AI Agents Are Here. What Now? | 01/13/25](https://huggingface.co/blog/ethics-soc-7)\n - [🇪🇺✍️ EU AI Act: Systemic Risks in the First CoP Draft Comments ✍️🇪🇺 | 12/12/24](https://huggingface.co/blog/yjernite/eu-draft-cop-risks)\n
","html":"\n\n\n\"MLSoc\n\n

Welcome to the Hugging Face ML & Society Team Page!

\n

We're a multidisciplinary team working on research and regulatory questions related to AI systems — their (open) development, governance, and impact on society at large.

\n

Team Members

\n\n

We also work closely with Irene Solaiman (Chief Policy Officer),\nand Avijit Ghosh, (Applied Policy Researcher) in the policy team,\nand with Meg Mitchell (Chief Ethics Scientist), and Bruna Trevelin (Legal Counsel) on various topics!

\n

Resources

\n

Team's Blog Posts

\n

See a non-exhaustive list of our team's recent writings below:

\n
\n \n Click to expand\n \n Recent blog posts:\n \n
\n\n","classNames":"hf-sanitized hf-sanitized-GvxKQaI1bM4pu1-AQDvnu"},"users":[{"_id":"5ee3a7cd2a3eae3cbdad1305","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1594144055859-5ee3a7cd2a3eae3cbdad1305.jpeg","isPro":true,"fullname":"Yacine Jernite","user":"yjernite","type":"user"},{"_id":"6413251362e6057cbb6259bd","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6413251362e6057cbb6259bd/k8UMg_tnorG_uCXidybZ7.jpeg","isPro":false,"fullname":"Avijit Ghosh","user":"evijit","type":"user"},{"_id":"60edd0133e2c73a9a21455f5","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/60edd0133e2c73a9a21455f5/yK1G-Fv-YjYb7v_chkz3p.jpeg","isPro":true,"fullname":"Sasha Luccioni","user":"sasha","type":"user"},{"_id":"62543749b777cd32720675c2","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/62543749b777cd32720675c2/EF_KRZO4hTo8TWXOtvc-n.png","isPro":false,"fullname":"Irene Solaiman","user":"irenesolaiman","type":"user"},{"_id":"6531310497d7f1b4a083de7b","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/ux7NRFAbgnlIVNh-Cbv9s.png","isPro":false,"fullname":"Lucie-Aimée Kaffee","user":"frimelle","type":"user"},{"_id":"63691c3eda9b693c2730b2a2","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/63691c3eda9b693c2730b2a2/hBtKpgo3_9003MWCGkw5d.png","isPro":false,"fullname":"Brigitte Tousignant","user":"BrigitteTousi","type":"user"},{"_id":"651ea296c887c687e09158af","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/651ea296c887c687e09158af/ju9Zx2xDBVhDLnLL1e1Mq.jpeg","isPro":false,"fullname":"Bruna Trevelin","user":"brunatrevelin","type":"user"},{"_id":"60c757ea5f9a76ab3f844f12","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1626214544196-60c757ea5f9a76ab3f844f12.png","isPro":false,"fullname":"Margaret Mitchell","user":"meg","type":"user"}],"userCount":8,"collections":[{"slug":"hfmlsoc/content-moderation-models-and-datasets-2025-69039c9fd2d48eb7362b217d","title":"Content moderation models and datasets - 2025","description":"Models and datasets that support automatic content moderation","gating":false,"lastUpdated":"2025-12-01T18:32:57.651Z","owner":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"items":[{"_id":"69039df787722836a2dc6c30","position":0,"type":"paper","id":"2208.03274","title":"A Holistic Approach to Undesired Content Detection in the Real World","thumbnailUrl":"https://cdn-thumbnails.huggingface.co/social-thumbnails/papers/2208.03274.png","upvotes":0,"publishedAt":"2022-08-05T16:47:23.000Z","isUpvotedByUser":false},{"_id":"69039cc4816ca48b792c206d","position":1,"type":"paper","note":{"html":"Papers ☝️","text":"Papers ☝️"},"id":"2310.17389","title":"ToxicChat: Unveiling Hidden Challenges of Toxicity Detection in\n Real-World User-AI Conversation","thumbnailUrl":"https://cdn-thumbnails.huggingface.co/social-thumbnails/papers/2310.17389.png","upvotes":0,"publishedAt":"2023-10-26T13:35:41.000Z","isUpvotedByUser":false},{"_id":"69039e1a75e779077af936ce","position":2,"type":"collection","id":"6902006dca8ab214e743bca6","slug":"openai/gpt-oss-safeguard-6902006dca8ab214e743bca6","title":"gpt-oss-safeguard","description":"gpt-oss-safeguard-120b and gpt-oss-safeguard-20b are safety reasoning models built-upon gpt-oss","lastUpdated":"2025-10-29T12:01:56.105Z","numberItems":2,"owner":{"_id":"609b82e52e11c13c4ac7c3f1","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/68783facef79a05727260de3/UPX5RQxiPGA-ZbBmArIKq.png","fullname":"OpenAI","name":"openai","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"plan":"enterprise","followerCount":31670,"isUserFollowing":false},"theme":"pink","shareUrl":"https://hf.co/collections/openai/gpt-oss-safeguard","upvotes":63,"isUpvotedByUser":false},{"_id":"69039e7ebdcb40370ac84072","position":3,"type":"collection","id":"690368aa56a66f5cdd220f58","slug":"SiddhJagani/gpt-oss-safeguard-20b-690368aa56a66f5cdd220f58","title":"GPT-OSS-safeguard:20b","description":"MLX Based GPT-OSS-Safeguard models","lastUpdated":"2025-11-01T05:41:35.103Z","numberItems":5,"owner":{"_id":"6826d0ec378176562edc90ff","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6826d0ec378176562edc90ff/w7qLaKBvl8Ian1FTee52d.jpeg","fullname":"Siddh Jagani","name":"SiddhJagani","type":"user","isPro":false,"isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":2,"isUserFollowing":false},"theme":"green","shareUrl":"https://hf.co/collections/SiddhJagani/gpt-oss-safeguard-20b","upvotes":0,"isUpvotedByUser":false}],"position":0,"theme":"blue","private":false,"shareUrl":"https://hf.co/collections/hfmlsoc/content-moderation-models-and-datasets-2025","upvotes":3,"isUpvotedByUser":false},{"slug":"hfmlsoc/ai-companionship-68cc1523cabca7bf132341c4","title":"AI companionship","description":"Resources related to AI companionship, such as datasets, papers, and Spaces","gating":false,"lastUpdated":"2025-09-18T14:27:57.288Z","owner":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"items":[{"_id":"68cc156bd2eaf0dd05ab00c9","position":0,"type":"dataset","author":"AI-companionship","downloads":68,"gated":false,"id":"AI-companionship/INTIMA","lastModified":"2025-08-29T09:30:36.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":380,"libraries":["datasets","pandas","mlcroissant","polars"],"formats":["json"],"modalities":["document","text"]},"private":false,"repoType":"dataset","likes":27,"isLikedByUser":false,"isBenchmark":false},{"_id":"68cc1575b1760e49226ab623","position":1,"type":"space","author":"AI-companionship","authorData":{"_id":"6835b4e1b243fb809826f4a8","avatarUrl":"https://www.gravatar.com/avatar/39760a4fc4792fc916a6cad9109ad03f?d=retro&size=100","fullname":"AI companionship","name":"AI-companionship","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":21,"isUserFollowing":false},"colorFrom":"purple","colorTo":"blue","createdAt":"2025-07-21T14:25:07.000Z","emoji":"🗺️","id":"AI-companionship/intima-responses-2D","lastModified":"2025-07-28T18:25:31.000Z","likes":10,"pinned":false,"private":false,"sdk":"docker","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":"cpu-basic","requested":"cpu-basic"},"storage":null,"gcTimeout":172800,"replicas":{"current":1,"requested":1},"devMode":false,"domains":[{"domain":"ai-companionship-intima-responses-2d.static.hf.space","stage":"READY"},{"domain":"ai-companionship-intima-responses-2d.hf.space","stage":"READY"}],"sha":"294092d7caa174e20bfabe37310899336b823ea9"},"shortDescription":"Visualizing model responses to companionship prompts","title":"INTIMA Companionship Benchmark Responses","isLikedByUser":false,"ai_short_description":"Run interactive web apps with Streamlit","ai_category":"Other","trendingScore":0,"tags":["docker","streamlit","region:us"],"featured":false},{"_id":"68cc160bfd910955d12fe05a","position":5,"type":"paper","id":"2508.09998","title":"INTIMA: A Benchmark for Human-AI Companionship Behavior","thumbnailUrl":"https://cdn-thumbnails.huggingface.co/social-thumbnails/papers/2508.09998.png","upvotes":11,"publishedAt":"2025-08-04T08:25:38.000Z","isUpvotedByUser":false},{"_id":"68cc16d2726905d8e3d03140","position":6,"type":"space","author":"giadap","authorData":{"_id":"6051e59531c5be7f3dd5ebc9","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/6051e59531c5be7f3dd5ebc9/H6yqqGGQKP3IVHMkS9Ni2.jpeg","fullname":"Giada Pistilli","name":"giadap","type":"user","isPro":false,"isHf":false,"isHfAdmin":true,"isMod":false,"followerCount":242,"isUserFollowing":false},"colorFrom":"indigo","colorTo":"pink","createdAt":"2025-07-23T09:20:03.000Z","emoji":"🚀","id":"giadap/INTIMA-responses","lastModified":"2025-07-24T09:15:31.000Z","likes":4,"pinned":false,"private":false,"sdk":"gradio","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":"cpu-basic","requested":"cpu-basic"},"storage":null,"gcTimeout":172800,"errorMessage":null,"replicas":{"current":1,"requested":1},"devMode":false,"domains":[{"domain":"giadap-intima-responses.hf.space","stage":"READY"}],"sha":"a78f9c646c77b41871586029cd351afd8e4d9a2c"},"shortDescription":"INTIMA Benchmark - Model Responses Explorer","title":"INTIMA Responses","isLikedByUser":false,"ai_short_description":"Explore and filter model responses for classification","ai_category":"Text Analysis","trendingScore":0,"tags":["gradio","region:us"],"featured":false}],"position":1,"theme":"purple","private":false,"shareUrl":"https://hf.co/collections/hfmlsoc/ai-companionship","upvotes":8,"isUpvotedByUser":false}],"datasets":[{"author":"hfmlsoc","downloads":1215,"gated":false,"id":"hfmlsoc/hub_weekly_snapshots","lastModified":"2026-02-15T05:50:48.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":212479741,"libraries":["datasets","dask","polars","mlcroissant"],"formats":["parquet"],"modalities":["image","tabular","text"]},"private":false,"repoType":"dataset","likes":5,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":13,"gated":false,"id":"hfmlsoc/sp500_10q_ai_statements","lastModified":"2026-01-14T15:02:16.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","dask","polars","mlcroissant"],"formats":["parquet","optimized-parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":5,"gated":false,"id":"hfmlsoc/sp500_2022_2025_ai_statements_only","lastModified":"2026-01-13T15:23:14.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","pandas","polars","mlcroissant"],"formats":["parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":7,"gated":false,"id":"hfmlsoc/sp500_dataset_sec_10k_earnings","lastModified":"2026-01-12T15:57:51.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","pandas","polars","mlcroissant"],"formats":["parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":22,"gated":false,"id":"hfmlsoc/sp500_earnings_annotations","lastModified":"2026-01-11T15:24:16.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","pandas","polars","mlcroissant"],"formats":["parquet","optimized-parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":32,"gated":false,"id":"hfmlsoc/sp500_sec_10k_annotations","lastModified":"2026-01-11T06:30:56.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","dask","polars","mlcroissant"],"formats":["parquet","optimized-parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":14,"gated":false,"id":"hfmlsoc/sp500_dataset_earnings_calls","lastModified":"2026-01-10T17:00:49.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","pandas","polars","mlcroissant"],"formats":["parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":31,"gated":false,"id":"hfmlsoc/sp500_dataset_sec_10q","lastModified":"2026-01-10T16:58:38.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","dask","polars","mlcroissant"],"formats":["parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":22,"gated":false,"id":"hfmlsoc/sp500_dataset_sec_10k","lastModified":"2026-01-10T16:56:43.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","dask","polars","mlcroissant"],"formats":["parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false},{"author":"hfmlsoc","downloads":11,"gated":false,"id":"hfmlsoc/sp500_dataset_earnings_sec","lastModified":"2026-01-09T15:55:28.000Z","datasetsServerInfo":{"viewer":"viewer","numRows":503,"libraries":["datasets","dask","polars","mlcroissant"],"formats":["parquet"],"modalities":["text"]},"private":false,"repoType":"dataset","likes":0,"isLikedByUser":false,"isBenchmark":false}],"models":[],"paperPreviews":[],"spaces":[{"author":"hfmlsoc","authorData":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"colorFrom":"yellow","colorTo":"purple","createdAt":"2026-02-11T20:00:10.000Z","emoji":"🌌","id":"hfmlsoc/different-flops","lastModified":"2026-02-16T21:14:51.000Z","likes":5,"pinned":true,"private":false,"sdk":"static","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":null,"requested":null},"storage":null,"replicas":{"requested":1,"current":1}},"shortDescription":"A Review of the Actual Training Costs of AI","title":"Different Flops for Different Folks","isLikedByUser":false,"originRepo":{"name":"lvwerra/distill-blog-template","author":{"_id":"5e48005437cb5b49818287a5","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5e48005437cb5b49818287a5/4uCXGGui-9QifAT4qelxU.png","fullname":"Leandro von Werra","name":"lvwerra","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":708,"isUserFollowing":false}},"ai_short_description":"Explore AI model training costs with interactive charts","ai_category":"Data Visualization","trendingScore":5,"tags":["static","region:us"],"featured":false},{"author":"hfmlsoc","authorData":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"colorFrom":"yellow","colorTo":"indigo","createdAt":"2025-09-19T23:33:49.000Z","emoji":"📚","id":"hfmlsoc/overview","lastModified":"2025-12-03T16:54:23.000Z","likes":15,"pinned":true,"private":false,"sdk":"static","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":null,"requested":null},"storage":null,"replicas":{"requested":1,"current":1},"domains":[{"domain":"hfmlsoc-overview.static.hf.space","stage":"READY"},{"domain":"mlsoc.hf.co","stage":"PENDING"}]},"shortDescription":"🤗 machine learning and society team website","title":"ML & Society at HF","isLikedByUser":false,"ai_short_description":"Explore AI research on sustainability and ethics","ai_category":"Document Analysis","trendingScore":0,"tags":["static","region:us"],"featured":false},{"author":"hfmlsoc","authorData":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"colorFrom":"gray","colorTo":"gray","createdAt":"2025-10-16T20:32:18.000Z","emoji":"🏢","id":"hfmlsoc/Lit_Review_with_LMs","lastModified":"2025-11-11T19:14:30.000Z","likes":1,"pinned":false,"private":false,"sdk":"gradio","repoType":"space","runtime":{"stage":"SLEEPING","hardware":{"current":null,"requested":"cpu-basic"},"storage":null,"gcTimeout":172800,"errorMessage":null,"replicas":{"requested":1},"devMode":false,"domains":[{"domain":"hfmlsoc-lit-review-with-lms.hf.space","stage":"READY"}]},"shortDescription":"Uses HF inference and academic APIs for directed lit review","title":"Lit Review With LMs","isLikedByUser":false,"ai_short_description":"Generate literature review scores with AI assistance","ai_category":"Text Analysis","trendingScore":0,"tags":["gradio","region:us"],"featured":false},{"author":"hfmlsoc","authorData":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"colorFrom":"indigo","colorTo":"blue","createdAt":"2025-09-15T20:25:18.000Z","emoji":"🏃","id":"hfmlsoc/legal-hackathons-nyu-ai2","lastModified":"2025-10-29T15:57:55.000Z","likes":2,"pinned":false,"private":false,"sdk":"static","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":null,"requested":null},"storage":null,"replicas":{"requested":1,"current":1}},"shortDescription":"Legal memos on AI from NYU hackathons","title":"Legal Hackathons Nyu Ai2","isLikedByUser":false,"ai_short_description":"Browse legal memos and guides on AI regulation","ai_category":"Document Analysis","trendingScore":0,"tags":["static","region:us"],"featured":false},{"author":"hfmlsoc","authorData":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"colorFrom":"green","colorTo":"yellow","createdAt":"2025-09-04T20:15:20.000Z","emoji":"👀","id":"hfmlsoc/labor-archive-explorer","lastModified":"2025-09-26T15:14:03.000Z","likes":1,"pinned":false,"private":false,"sdk":"static","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":null,"requested":null},"storage":null,"replicas":{"requested":1,"current":1}},"title":"Labor Archive Explorer","isLikedByUser":false,"ai_short_description":"Explore AI, Labor, and Economy trends from 2022-2025","ai_category":"Document Analysis","trendingScore":0,"tags":["static","region:us"],"featured":false}],"buckets":[],"numBuckets":0,"numDatasets":19,"numModels":0,"numSpaces":9,"lastOrgActivities":[{"time":"2026-02-16T20:05:21.030Z","user":"yjernite","userAvatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1594144055859-5ee3a7cd2a3eae3cbdad1305.jpeg","orgAvatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","type":"publish","repoData":{"author":"hfmlsoc","authorData":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"colorFrom":"yellow","colorTo":"purple","createdAt":"2026-02-11T20:00:10.000Z","emoji":"🌌","id":"hfmlsoc/different-flops","lastModified":"2026-02-16T21:14:51.000Z","likes":5,"pinned":true,"private":false,"sdk":"static","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":null,"requested":null},"storage":null,"replicas":{"requested":1,"current":1}},"shortDescription":"A Review of the Actual Training Costs of AI","title":"Different Flops for Different Folks","isLikedByUser":false,"originRepo":{"name":"lvwerra/distill-blog-template","author":{"_id":"5e48005437cb5b49818287a5","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5e48005437cb5b49818287a5/4uCXGGui-9QifAT4qelxU.png","fullname":"Leandro von Werra","name":"lvwerra","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":708,"isUserFollowing":false}},"ai_short_description":"Explore AI model training costs with interactive charts","ai_category":"Data Visualization","trendingScore":5,"tags":["static","region:us"],"featured":false},"repoId":"hfmlsoc/different-flops","repoType":"space","org":"hfmlsoc"},{"time":"2026-02-16T17:38:20.927Z","user":"sasha","userAvatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/60edd0133e2c73a9a21455f5/yK1G-Fv-YjYb7v_chkz3p.jpeg","orgAvatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","type":"update","repoData":{"author":"hfmlsoc","authorData":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"colorFrom":"yellow","colorTo":"purple","createdAt":"2026-02-11T20:00:10.000Z","emoji":"🌌","id":"hfmlsoc/different-flops","lastModified":"2026-02-16T21:14:51.000Z","likes":5,"pinned":true,"private":false,"sdk":"static","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":null,"requested":null},"storage":null,"replicas":{"requested":1,"current":1}},"shortDescription":"A Review of the Actual Training Costs of AI","title":"Different Flops for Different Folks","isLikedByUser":false,"originRepo":{"name":"lvwerra/distill-blog-template","author":{"_id":"5e48005437cb5b49818287a5","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5e48005437cb5b49818287a5/4uCXGGui-9QifAT4qelxU.png","fullname":"Leandro von Werra","name":"lvwerra","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":708,"isUserFollowing":false}},"ai_short_description":"Explore AI model training costs with interactive charts","ai_category":"Data Visualization","trendingScore":5,"tags":["static","region:us"],"featured":false},"repoId":"hfmlsoc/different-flops","repoType":"space","org":"hfmlsoc"},{"time":"2026-02-16T15:47:40.763Z","user":"yjernite","userAvatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/1594144055859-5ee3a7cd2a3eae3cbdad1305.jpeg","orgAvatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","type":"update","repoData":{"author":"hfmlsoc","authorData":{"_id":"680946f7ebef195ed6bd4850","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5ee3a7cd2a3eae3cbdad1305/6uNCzs7ocjri3bNpfBLQg.png","fullname":"Hugging Face ML & Society Team","name":"hfmlsoc","type":"org","isHf":false,"isHfAdmin":false,"isMod":false,"followerCount":30,"isUserFollowing":false},"colorFrom":"yellow","colorTo":"purple","createdAt":"2026-02-11T20:00:10.000Z","emoji":"🌌","id":"hfmlsoc/different-flops","lastModified":"2026-02-16T21:14:51.000Z","likes":5,"pinned":true,"private":false,"sdk":"static","repoType":"space","runtime":{"stage":"RUNNING","hardware":{"current":null,"requested":null},"storage":null,"replicas":{"requested":1,"current":1}},"shortDescription":"A Review of the Actual Training Costs of AI","title":"Different Flops for Different Folks","isLikedByUser":false,"originRepo":{"name":"lvwerra/distill-blog-template","author":{"_id":"5e48005437cb5b49818287a5","avatarUrl":"https://cdn-avatars.huggingface.co/v1/production/uploads/5e48005437cb5b49818287a5/4uCXGGui-9QifAT4qelxU.png","fullname":"Leandro von Werra","name":"lvwerra","type":"user","isPro":false,"isHf":true,"isHfAdmin":false,"isMod":false,"followerCount":708,"isUserFollowing":false}},"ai_short_description":"Explore AI model training costs with interactive charts","ai_category":"Data Visualization","trendingScore":5,"tags":["static","region:us"],"featured":false},"repoId":"hfmlsoc/different-flops","repoType":"space","org":"hfmlsoc"}],"acceptLanguages":["*"],"canReadRepos":false,"canReadSpaces":false,"blogPosts":[],"currentRepoPage":0,"filters":{},"paperView":false}">

AI & ML interests

Research and Policy Questions raised by (open) AI technology

Recent Activity

yjernite  published a Space 4 days ago
hfmlsoc/different-flops
sasha  updated a Space 4 days ago
hfmlsoc/different-flops
yjernite  updated a Space 4 days ago
hfmlsoc/different-flops
View all activity

MLSoc Banner

Welcome to the Hugging Face ML & Society Team Page!

We're a multidisciplinary team working on research and regulatory questions related to AI systems — their (open) development, governance, and impact on society at large.

Team Members

We also work closely with Irene Solaiman (Chief Policy Officer), and Avijit Ghosh, (Applied Policy Researcher) in the policy team, and with Meg Mitchell (Chief Ethics Scientist), and Bruna Trevelin (Legal Counsel) on various topics!

Resources

Team's Blog Posts

See a non-exhaustive list of our team's recent writings below:

Click to expand Recent blog posts:

models 0

None public yet