アフィン接続
(affine connection から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/08 15:22 UTC 版)
|
この記事の正確性に疑問が呈されています。
|
|
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。
|
数学の一分野である微分幾何学において、アフィン接続(アフィンせつぞく、affine connection)は、滑らかな多様体上の幾何学的対象の一種。周辺の接空間が〈接続〉されることにより、接ベクトル場が——固定されたベクトル空間に値を持つ函数のように——微分できるようになる。アフィン接続の考え方は、19世紀の幾何学とテンソル解析に由来するが、1920年代初頭にエリ・カルタンやヘルマン・ワイルが(カルタン接続という一般理論や一般相対論の基礎付けの為に)研究するまでは十分に発展されなかった。用語はカルタンによるもので、ユークリッド空間 Rn 内の接空間を平行移動によって同一視することに由来する。アフィン接続を指定することで、多様体が無限小で滑らかなだけでなくアフィン空間としてユークリッド空間のようになるということである。
滑らかな多様体上には無限個のアフィン接続が存在する。さらに多様体がリーマン計量を持つと、アフィン接続を自然に選択することができ、この接続をレヴィ・チヴィタ接続と呼ぶ。アフィン接続を選択することは、(接)ベクトル場を規定することと同値であり、合理的な性質(線型性やライプニッツ則)を満たす。このことは、接バンドル上の共変微分や(線型)接続として、アフィン接続が妥当な定義であることを意味する。アフィン接続の選択は、曲線に沿って変換する接ベクトルを意味する平行移動の考え方と同値でもある。このことはまた、標構バンドル上の平行性を持つ変換を定義する。標構バンドル上の無限小平行移動は、アフィン接続、アフィン群のカルタン接続、あるいは、標構バンドル上の接続の別の記述であることをも意味する。
アフィン接続の主な不変量は、捩率と曲率である。捩率はどのようにして、ベクトル場のリーブラケットがアフィン接続から再現可能かを測る。アフィン接続は、多様体の(アフィン)測地線を定義することに使われる。ここで使われる直線の幾何学である測地線は、通常のユークリッド幾何学からは非常に異なるにもかかわらず、ユークリッド空間の直線の一般化となっている。直線と測地線との違いは、測地線が接続の曲率の中に全ての情報をカプセル化していることである。
動機と歴史
滑らかな多様体は、局所的にユークリッド空間 Rn の滑らかな変形に見える数学的な対象である。たとえば、滑らかな曲線や曲面は、局所的には直線や平面の滑らかな変形に見える。滑らかな函数とベクトル場は、まさにユークリッド空間上であるかのように多様体を定義することができ、多様体上のスカラー函数は、自然な方法で微分することが可能である。ベクトル場の微分は、ユークリッド空間においては簡単な問題である。なぜなら、点 p における接ベクトル空間が普通に(平行移動によって)近くの点 q での接ベクトル空間と同一視できるからである。しかしながら、一般の多様体上でのベクトル場の微分はそう単純にはいかない。一般に、多様体上では近くの接空間の間にそのような自然な同一視は存在しないので、近接する点での接空間を well-defined な方法で比較することはできない。アフィン接続の考えは、近くの接空間を「接続する」ことにより、この問題を修正することで導入された。このアイデアの起源は、2つの源へと遡ることができる、曲面論とテンソル解析である。
曲面論からの動機
3-次元ユークリッド空間の中の滑らかな曲面 S を考える。任意の点の近くで、S はユークリッド空間のアフィン部分空間である接平面により近似することができる。19世紀の微分幾何学者は、発展の考えに興味をもった.これは、ある曲面を他の曲面に沿って滑ったり捩れたり(ツイストしたり)しないように転がす (roll)ことについての考えである。特に S の点への接平面は、S 上で転がることができる。これは、S が 2-球面のような曲面(凸な領域の滑らかな境界)である場合には想像しやすいはずだ。 S 上で接平面を転がしていくと、その接触点が S 上にある曲線を描く。逆に、S 上の曲線が与えられると、接平面をその曲線に沿って転がしていくことができる。この考え方が、ある曲線上の異なる点における接平面たちを同一視するための方法となる。特に、曲線上のある点での接空間ないの接ベクトルは、曲線上の任意の点での一意の接ベクトルと同一視される。これらの同一視は、常に、ひとつの接平面から別の平面へのアフィン変換により与えられる。
アフィン変換による、曲線に沿ったこの接ベクトルの平行移動の考えは、特徴的な性質をもっている。接平面が曲面と接触する点は、平行移動の下に曲線とともに常に移動する(すなわち、接平面が曲面上を転がっていきつつ、その接触点も移動していく)。この基本的条件はカルタン接続の特徴である。より現代的アプローチでは、接触点は接平面の原点と見なすことができ(従って接空間はベクトル空間である)、原点の移動は変換により修正され、従って平行移動はアフィンというよりも線型となる。
しかしながら、カルタン接続の観点では、ユークリッド空間のアフィン部分空間は、モデル曲面 - 3次元ユークリッド空間の中の最も単純な曲面であり、平面のアフィン群の下に等質 - であり、すべての滑らかな曲面は各々の点で接する一意にモデル曲面を持つ.これらのモデル曲面は、フェリックス・クラインのエルランゲンプログラムの意味でのクラインの幾何学である。より一般的には、n 次元アフィン空間はアフィン群 Aff(n) のクライン幾何学である。点の安定化因子は一般線型群 GL(n) である。従って、n-次元アフィン多様体は、無限小を考えると n-アフィン空間のように見える多様体である。
テンソル解析からの動機
アフィン接続の第二の動機は、ベクトル場の共変微分の考えから来る。座標独立な方法が登場する以前は、座標チャートの中のベクトルの成分を使いベクトル場を研究する必要があった。これらの成分を微分することはできるが、この微分は座標変換の下で管理可能な方法では変換しない。正しい記述はエルヴィン・クリストッフェル(Elwin Bruno Christoffel)により(ベルンハルト・リーマン(Bernhard Riemann)のアイデアに従い、1870年代に導入され、座標変換の下に共変な変換に沿ったベクトル場の(正しい)微分 — これらを集大成した結果は、クリストッフェル記号として知られる。このアイデアは、グレゴリオ・リッチ・クルバストロ(Gregorio Ricci-Curbastro)と彼の学生のレヴィ・チヴィタ(Tullio Levi-Civita)により、1880年代と20世紀への変わり目の間に(現在、テンソル解析として知られている)絶対微分法の理論へ発展した。
テンソル解析は、実際は、1915年のアルベルト・アインシュタイン(Albert Einstein)の一般相対論の登場により息を吹き返した。一般相対論の何年か後に、レヴィ・チヴィタは、リーマン計量に付随する一意な接続を定式化した。現在、この接続は、レヴィ・チヴィタ接続として知られている、さらに一般的なアフィン接続は、1920年頃に、ヘルマン・ワイル(Hermann Weyl)[1]により研究され、彼は詳細に数学的な一般相対論の基礎付けを行い、エリ・カルタン(Élie Cartan)[2] は、曲面論から来る幾何学的アイデアを考案した。
アプローチ
アフィン接続へのアプローチとその一般化は様々であり、複雑な歴史をもっている。
最も一般的なアプローチは、おそらく、共変微分による定義であろう。一方、ワイルの考え方は、ゲージ理論やゲージ共変微分という形であり、物理学者により採用されている。他方、共変微分はジャン・ルイ・コシュル(Jean-Louis Koszul)により抽象化され、彼はベクトル束上の(線型、あるいはKoszul)接続を定義した。この言葉を使うと、アフィン接続は単に接束上の共変微分、あるいは、(線型)接続である。
しかしながら、このアプローチは、背後にある幾何学や、その名前の由来を説明しない[3] この用語は実際は、変換によりユークリッド空間での接空間の同一視に起源をもっている。この性質は、n-次元ユークリッド空間はアフィン空間でもあることに起源がある。(言い換えると、ユークリッド空間は、群の作用の下に主等質空間である、あるいは、テンソルであると言える。)導入部でも述べたように、この詳細を記述するためのいくつかの方法がある。アフィン接続は、曲線に沿ったベクトル場の平行移動であるという事実を使う。このことは標構バンドルの平行移動を定義する。標構バンドル上の無限小平行移動は、カルタン接続として、あるいは標構バンドルの主アフィン接続の GL(n) 接続として、アフィン群 Aff(n) の別な表現でもある。
微分作用素としての定義
M を滑らかな多様体、C∞(M,TM) を M 上のベクトル場の空間、つまり、接バンドル TM の滑らかな切断の空間とすると、M 上のアフィン接続 (affine connection) は、すべての C∞(M,R) の滑らかな函数 f とすべての M 上のベクトル場 X, Y に対し次の 2項目が成り立つような双線型写像
-
球面の中の曲線にそった接ベクトルの平行移動 多様体上の異なる点での接ベクトルの比較は、一般的には well-defined な過程を通すことは困難である。アフィン接続は平行移動の考えを使い、このことを修正するひとつの方法であり、実際、アフィン接続を定義することに使うことができる。
M をアフィン接続 ∇ を持つ多様体としたとき、すべてのベクトル場 Y に対して、∇YX = 0 となるという意味で ∇X = 0 であれば、ベクトル場は平行であると言う。直感的言うと、平行なベクトルはすべての微分が 0 に等しくなり、従って、ある意味では定数となる。2つの点 x と y での平行ベクトル場を解析することにより、2つの点での接ベクトルの間の同一視が得られる。そのような接ベクトルを互いに平行移動の関係と言う。
不幸にも、平行ベクトル場は一般には存在しない。方程式 ∇X = 0 は過剰決定系である偏微分方程式で、この方程式の可積分条件は、(以下に見るように)曲率 ∇ が 0 となるときのみである。しかし、この方程式を x から y への曲線へ限定すると、方程式は常微分方程式となり、x での X の任意の初期値に対して一意な解が存在する。
さらに詳しくは、γ : I → M を区間 [a,b] でパラメトライズされた滑らかな曲線とし、x = γ(a) としたときに ξ ∈ TxM とする。さらに、次の 2つの条件を満たすとき、γ に沿ったベクトル場 X (と、特に、y = γ(b) でのこのベクトル場の値)を γ に沿った ξ の平行移動と呼ぶ。
- すべての t ∈ [a,b] に対し、
カテゴリ
- すべての t ∈ [a,b] に対し、
- affine connectionのページへのリンク