use std::any::Any;
use std::collections::BTreeMap;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use crate::error::Result;
use crate::physical_plan::{
ColumnStatistics, DisplayFormatType, ExecutionPlan, Partitioning, PhysicalExpr,
};
use arrow::datatypes::{Field, Schema, SchemaRef};
use arrow::error::Result as ArrowResult;
use arrow::record_batch::RecordBatch;
use log::debug;
use super::expressions::{Column, PhysicalSortExpr};
use super::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
use super::{RecordBatchStream, SendableRecordBatchStream, Statistics};
use crate::execution::context::TaskContext;
use futures::stream::Stream;
use futures::stream::StreamExt;
#[derive(Debug)]
pub struct ProjectionExec {
expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
schema: SchemaRef,
input: Arc<dyn ExecutionPlan>,
metrics: ExecutionPlanMetricsSet,
}
impl ProjectionExec {
pub fn try_new(
expr: Vec<(Arc<dyn PhysicalExpr>, String)>,
input: Arc<dyn ExecutionPlan>,
) -> Result<Self> {
let input_schema = input.schema();
let fields: Result<Vec<Field>> = expr
.iter()
.map(|(e, name)| {
let mut field = Field::new(
name,
e.data_type(&input_schema)?,
e.nullable(&input_schema)?,
);
field.set_metadata(get_field_metadata(e, &input_schema));
Ok(field)
})
.collect();
let schema = Arc::new(Schema::new_with_metadata(
fields?,
input_schema.metadata().clone(),
));
Ok(Self {
expr,
schema,
input: input.clone(),
metrics: ExecutionPlanMetricsSet::new(),
})
}
pub fn expr(&self) -> &[(Arc<dyn PhysicalExpr>, String)] {
&self.expr
}
pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
&self.input
}
}
impl ExecutionPlan for ProjectionExec {
fn as_any(&self) -> &dyn Any {
self
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
vec![self.input.clone()]
}
fn output_partitioning(&self) -> Partitioning {
self.input.output_partitioning()
}
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
self.input.output_ordering()
}
fn maintains_input_order(&self) -> bool {
true
}
fn relies_on_input_order(&self) -> bool {
false
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(ProjectionExec::try_new(
self.expr.clone(),
children[0].clone(),
)?))
}
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
debug!("Start ProjectionExec::execute for partition {} of context session_id {} and task_id {:?}", partition, context.session_id(), context.task_id());
Ok(Box::pin(ProjectionStream {
schema: self.schema.clone(),
expr: self.expr.iter().map(|x| x.0.clone()).collect(),
input: self.input.execute(partition, context)?,
baseline_metrics: BaselineMetrics::new(&self.metrics, partition),
}))
}
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default => {
let expr: Vec<String> = self
.expr
.iter()
.map(|(e, alias)| {
let e = e.to_string();
if &e != alias {
format!("{} as {}", e, alias)
} else {
e
}
})
.collect();
write!(f, "ProjectionExec: expr=[{}]", expr.join(", "))
}
}
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Statistics {
stats_projection(
self.input.statistics(),
self.expr.iter().map(|(e, _)| Arc::clone(e)),
)
}
}
fn get_field_metadata(
e: &Arc<dyn PhysicalExpr>,
input_schema: &Schema,
) -> Option<BTreeMap<String, String>> {
let name = if let Some(column) = e.as_any().downcast_ref::<Column>() {
column.name()
} else {
return None;
};
input_schema
.field_with_name(name)
.ok()
.and_then(|f| f.metadata().cloned())
}
fn stats_projection(
stats: Statistics,
exprs: impl Iterator<Item = Arc<dyn PhysicalExpr>>,
) -> Statistics {
let column_statistics = stats.column_statistics.map(|input_col_stats| {
exprs
.map(|e| {
if let Some(col) = e.as_any().downcast_ref::<Column>() {
input_col_stats[col.index()].clone()
} else {
ColumnStatistics::default()
}
})
.collect()
});
Statistics {
is_exact: stats.is_exact,
num_rows: stats.num_rows,
column_statistics,
total_byte_size: None,
}
}
impl ProjectionStream {
fn batch_project(&self, batch: &RecordBatch) -> ArrowResult<RecordBatch> {
let _timer = self.baseline_metrics.elapsed_compute().timer();
let arrays = self
.expr
.iter()
.map(|expr| expr.evaluate(batch))
.map(|r| r.map(|v| v.into_array(batch.num_rows())))
.collect::<Result<Vec<_>>>()?;
RecordBatch::try_new(self.schema.clone(), arrays)
}
}
struct ProjectionStream {
schema: SchemaRef,
expr: Vec<Arc<dyn PhysicalExpr>>,
input: SendableRecordBatchStream,
baseline_metrics: BaselineMetrics,
}
impl Stream for ProjectionStream {
type Item = ArrowResult<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
let poll = self.input.poll_next_unpin(cx).map(|x| match x {
Some(Ok(batch)) => Some(self.batch_project(&batch)),
other => other,
});
self.baseline_metrics.record_poll(poll)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.input.size_hint()
}
}
impl RecordBatchStream for ProjectionStream {
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::physical_plan::expressions::{self, col};
use crate::prelude::SessionContext;
use crate::scalar::ScalarValue;
use crate::test::{self};
use crate::test_util;
use futures::future;
#[tokio::test]
async fn project_first_column() -> Result<()> {
let session_ctx = SessionContext::new();
let task_ctx = session_ctx.task_ctx();
let schema = test_util::aggr_test_schema();
let partitions = 4;
let csv = test::scan_partitioned_csv(partitions)?;
let projection =
ProjectionExec::try_new(vec![(col("c1", &schema)?, "c1".to_string())], csv)?;
let col_field = projection.schema.field(0);
let col_metadata = col_field.metadata().unwrap().clone();
let data: &str = &col_metadata["testing"];
assert_eq!(data, "test");
let mut partition_count = 0;
let mut row_count = 0;
for partition in 0..projection.output_partitioning().partition_count() {
partition_count += 1;
let stream = projection.execute(partition, task_ctx.clone())?;
row_count += stream
.map(|batch| {
let batch = batch.unwrap();
assert_eq!(1, batch.num_columns());
batch.num_rows()
})
.fold(0, |acc, x| future::ready(acc + x))
.await;
}
assert_eq!(partitions, partition_count);
assert_eq!(100, row_count);
Ok(())
}
#[tokio::test]
async fn test_stats_projection_columns_only() {
let source = Statistics {
is_exact: true,
num_rows: Some(5),
total_byte_size: Some(23),
column_statistics: Some(vec![
ColumnStatistics {
distinct_count: Some(5),
max_value: Some(ScalarValue::Int64(Some(21))),
min_value: Some(ScalarValue::Int64(Some(-4))),
null_count: Some(0),
},
ColumnStatistics {
distinct_count: Some(1),
max_value: Some(ScalarValue::Utf8(Some(String::from("x")))),
min_value: Some(ScalarValue::Utf8(Some(String::from("a")))),
null_count: Some(3),
},
ColumnStatistics {
distinct_count: None,
max_value: Some(ScalarValue::Float32(Some(1.1))),
min_value: Some(ScalarValue::Float32(Some(0.1))),
null_count: None,
},
]),
};
let exprs: Vec<Arc<dyn PhysicalExpr>> = vec![
Arc::new(expressions::Column::new("col1", 1)),
Arc::new(expressions::Column::new("col0", 0)),
];
let result = stats_projection(source, exprs.into_iter());
let expected = Statistics {
is_exact: true,
num_rows: Some(5),
total_byte_size: None,
column_statistics: Some(vec![
ColumnStatistics {
distinct_count: Some(1),
max_value: Some(ScalarValue::Utf8(Some(String::from("x")))),
min_value: Some(ScalarValue::Utf8(Some(String::from("a")))),
null_count: Some(3),
},
ColumnStatistics {
distinct_count: Some(5),
max_value: Some(ScalarValue::Int64(Some(21))),
min_value: Some(ScalarValue::Int64(Some(-4))),
null_count: Some(0),
},
]),
};
assert_eq!(result, expected);
}
}