use std::any::Any;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use super::expressions::PhysicalSortExpr;
use super::{RecordBatchStream, SendableRecordBatchStream, Statistics};
use crate::error::{DataFusionError, Result};
use crate::physical_plan::{
metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet},
DisplayFormatType, ExecutionPlan, Partitioning, PhysicalExpr,
};
use arrow::array::BooleanArray;
use arrow::compute::filter_record_batch;
use arrow::datatypes::{DataType, SchemaRef};
use arrow::error::Result as ArrowResult;
use arrow::record_batch::RecordBatch;
use log::debug;
use crate::execution::context::TaskContext;
use futures::stream::{Stream, StreamExt};
#[derive(Debug)]
pub struct FilterExec {
predicate: Arc<dyn PhysicalExpr>,
input: Arc<dyn ExecutionPlan>,
metrics: ExecutionPlanMetricsSet,
}
impl FilterExec {
pub fn try_new(
predicate: Arc<dyn PhysicalExpr>,
input: Arc<dyn ExecutionPlan>,
) -> Result<Self> {
match predicate.data_type(input.schema().as_ref())? {
DataType::Boolean => Ok(Self {
predicate,
input: input.clone(),
metrics: ExecutionPlanMetricsSet::new(),
}),
other => Err(DataFusionError::Plan(format!(
"Filter predicate must return boolean values, not {:?}",
other
))),
}
}
pub fn predicate(&self) -> &Arc<dyn PhysicalExpr> {
&self.predicate
}
pub fn input(&self) -> &Arc<dyn ExecutionPlan> {
&self.input
}
}
impl ExecutionPlan for FilterExec {
fn as_any(&self) -> &dyn Any {
self
}
fn schema(&self) -> SchemaRef {
self.input.schema()
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
vec![self.input.clone()]
}
fn output_partitioning(&self) -> Partitioning {
self.input.output_partitioning()
}
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
self.input.output_ordering()
}
fn maintains_input_order(&self) -> bool {
true
}
fn relies_on_input_order(&self) -> bool {
false
}
fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
Ok(Arc::new(FilterExec::try_new(
self.predicate.clone(),
children[0].clone(),
)?))
}
fn execute(
&self,
partition: usize,
context: Arc<TaskContext>,
) -> Result<SendableRecordBatchStream> {
debug!("Start FilterExec::execute for partition {} of context session_id {} and task_id {:?}", partition, context.session_id(), context.task_id());
let baseline_metrics = BaselineMetrics::new(&self.metrics, partition);
Ok(Box::pin(FilterExecStream {
schema: self.input.schema(),
predicate: self.predicate.clone(),
input: self.input.execute(partition, context)?,
baseline_metrics,
}))
}
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default => {
write!(f, "FilterExec: {}", self.predicate)
}
}
}
fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
fn statistics(&self) -> Statistics {
Statistics::default()
}
}
struct FilterExecStream {
schema: SchemaRef,
predicate: Arc<dyn PhysicalExpr>,
input: SendableRecordBatchStream,
baseline_metrics: BaselineMetrics,
}
fn batch_filter(
batch: &RecordBatch,
predicate: &Arc<dyn PhysicalExpr>,
) -> ArrowResult<RecordBatch> {
predicate
.evaluate(batch)
.map(|v| v.into_array(batch.num_rows()))
.map_err(DataFusionError::into)
.and_then(|array| {
array
.as_any()
.downcast_ref::<BooleanArray>()
.ok_or_else(|| {
DataFusionError::Internal(
"Filter predicate evaluated to non-boolean value".to_string(),
)
.into()
})
.and_then(|filter_array| filter_record_batch(batch, filter_array))
})
}
impl Stream for FilterExecStream {
type Item = ArrowResult<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
let poll = self.input.poll_next_unpin(cx).map(|x| match x {
Some(Ok(batch)) => {
let timer = self.baseline_metrics.elapsed_compute().timer();
let filtered_batch = batch_filter(&batch, &self.predicate);
timer.done();
Some(filtered_batch)
}
other => other,
});
self.baseline_metrics.record_poll(poll)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.input.size_hint()
}
}
impl RecordBatchStream for FilterExecStream {
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::physical_plan::expressions::*;
use crate::physical_plan::ExecutionPlan;
use crate::physical_plan::{collect, with_new_children_if_necessary};
use crate::prelude::SessionContext;
use crate::test;
use crate::test_util;
use datafusion_expr::Operator;
use std::iter::Iterator;
#[tokio::test]
async fn simple_predicate() -> Result<()> {
let session_ctx = SessionContext::new();
let task_ctx = session_ctx.task_ctx();
let schema = test_util::aggr_test_schema();
let partitions = 4;
let csv = test::scan_partitioned_csv(partitions)?;
let predicate: Arc<dyn PhysicalExpr> = binary(
binary(col("c2", &schema)?, Operator::Gt, lit(1u32), &schema)?,
Operator::And,
binary(col("c2", &schema)?, Operator::Lt, lit(4u32), &schema)?,
&schema,
)?;
let filter: Arc<dyn ExecutionPlan> =
Arc::new(FilterExec::try_new(predicate, csv)?);
let results = collect(filter, task_ctx).await?;
results
.iter()
.for_each(|batch| assert_eq!(13, batch.num_columns()));
let row_count: usize = results.iter().map(|batch| batch.num_rows()).sum();
assert_eq!(41, row_count);
Ok(())
}
#[tokio::test]
#[allow(clippy::vtable_address_comparisons)]
async fn with_new_children() -> Result<()> {
let schema = test_util::aggr_test_schema();
let partitions = 4;
let input = test::scan_partitioned_csv(partitions)?;
let predicate: Arc<dyn PhysicalExpr> =
binary(col("c2", &schema)?, Operator::Gt, lit(1u32), &schema)?;
let filter: Arc<dyn ExecutionPlan> =
Arc::new(FilterExec::try_new(predicate, input.clone())?);
let new_filter = filter.clone().with_new_children(vec![input.clone()])?;
assert!(!Arc::ptr_eq(&filter, &new_filter));
let new_filter2 = with_new_children_if_necessary(filter.clone(), vec![input])?;
assert!(Arc::ptr_eq(&filter, &new_filter2));
Ok(())
}
}