Deprecated: The each() function is deprecated. This message will be suppressed on further calls in /home/zhenxiangba/zhenxiangba.com/public_html/phproxy-improved-master/index.php on line 456
ラングランズプログラムのモチーフ圏を通した定式化
[go: Go Back, main page]

2025-06-03

ラングランズプログラムモチーフ圏を通した定式化

ラングランズプログラムには、数の幾何化という視点がある。

具体的対象ガロア表現・保型表現)を超えて、それらの起源圏論存在、つまりモチーフ考察対象とする。

モチーフとは、代数多様体コホモロジー理論普遍的源泉として構成される抽象対象であり、以下のような関手性質を持つ。

H*: Mot_F → Vec_ℚℓ, (ℓ-adic, de Rham, Betti, etc.)

まり、さまざまなコホモロジー理論共通起源圏がモチーフである

[射影:モチーフガロア表現]ある純モチーフ M ∈ Mot_F に対し、そのℓ進エタール・コホモロジーは有限次元ガロア表現を与える。

ρ_M: Gal(F̅/F) → GL(Hⁱ_ét(M_F̅, ℚℓ))

したがって、すべての「よい」ガロア表現モチーフに由来すると考えられる(これは標準予想やFontaine–Mazur予想にも関係)。

Langlandsプログラムの主張は、次のように抽象化できる。

There exists a contravariant, fully faithful functor: Mot_F^(pure) → Rep_auto(G(𝔸_F))

ここで左辺は純モチーフ次元・重み付き構造を持つ)、右辺は保型表現(解析的表現論の対象)。

これは、次の圏間関手存在に他ならない・

Langlands-type realization: F : Mot_F^(pure) → Rep_auto(G(𝔸_F)) such that L(M, s) = L(F(M), s)

この関手は、モチーフに対して定義される標準的なL関数(motivic L-function)と保型L関数を一致させることを要請する。

Langlands関手性は、Tannakian圏の間のテンソル関手として定式化できる。

モチーフ圏 Mot_F は Tannakian category(標準予想を仮定)。保型表現圏も、ある種の Tannakian 圏とみなせる(Langlands dual group による)。

すると、Langlands対応は以下の図式として表現される。

Tannakian category: Mot_F → Rep(^L G) via fiber functor: ω: Mot_F → Vec_ℚℓ

このように、モチーフ→L-群の表現→保型表現という圏論連鎖帰着される。

ラングランズ・プログラムは以下のようなテンソル圏間の関手対応を予想するものである

∃ faithful tensor functor F: Mot_F^(pure) → Rep_auto(G(𝔸_F)) s.t. L(M, s) = L(F(M), s)

また、群準同型 ^L G₁ → ^L G₂ により、対応する圏の間に関手対応存在する。

φ_*: Rep_auto(G₁(𝔸_F)) → Rep_auto(G₂(𝔸_F))

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん